【題目】在貫徹中共中央國務院關于精準扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標,制成下圖,其中”表示甲村貧困戶,“”表示乙村貧困戶.若,則認定該戶為“絕對貧困戶”,若,則認定該戶為“相對貧困戶”,若,則認定該戶為“低收入戶”;若,則認定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從乙村的50戶中隨機選出一戶,求該戶為“絕對貧困戶”的概率;

(2)從甲村所有“今年不能脫貧的非絕對貧困戶”中任選2戶,求選出的2戶均為“低收入戶”的概率;

(3)試比較這100戶中,甲、乙兩村指標的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

【答案】(1);(2);(3甲村指標的方差大于乙村指標的方差.

【解析】試題分析:(1)由圖知,在乙村戶中,指標的有戶,根據(jù)古典概型概率公式可得結(jié)果;(2)利用列舉法可得,所有可能的結(jié)果組成的基本事件有個,其中兩戶均為“低收入戶”的事件共有個,根據(jù)古典概型概率公式可得選出的戶均為“低收入戶”的概率;(3) 由圖可知,這戶中甲村指標的方差大于乙村指標的方差..

試題解析:(1)由圖知,在乙村50戶中,指標的有15戶,

所以,從乙村50戶中隨機選出一戶,該戶為“絕對貧困戶”的概率為.

(2)甲村“今年不能脫貧的非絕對貧困戶”共有6戶,其中“相對貧困戶”有3戶,分別記為 , .“低收入戶”有3戶,分別記為, , ,所有可能的結(jié)果組成的基本事件有:

, , ,

, ,

, ,

, .

共15個,其中兩戶均為“低收入戶”的共有3個,

所以,所選2戶均為“低收入戶”的概率.

(3)由圖可知,這100戶中甲村指標的方差大于乙村指標的方差.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,且,

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)的導函數(shù)為,且,若存在實數(shù),使不等式對于任意恒成立,則實數(shù)的取值范圍是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)滿足,的虛部為2

1)求復數(shù);

2)設在復平面上對應點分別為,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,斜率為的直線交拋物線,兩點,當直線過點時,以為直徑的圓與直線相切.

(1)求拋物線的方程;

(2)與平行的直線交拋物線于兩點,若平行線之間的距離為,且的面積是面積的倍,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,點在橢圓上,有,橢圓的離心率為;

(1)求橢圓的標準方程;

(2)已知,過點作斜率為kk>0)的直線與橢圓交于不同兩點,線段的中垂線為,記的縱截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱中,,,,,,側(cè)棱底面,的中點.

(1)求證:平面;

(2)設點在線段上,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當時,求的單調(diào)區(qū)間;

2)設點是函數(shù)圖象的不同兩點,其中,,是否存在實數(shù),使得,且函數(shù)在點切線的斜率為,若存在,請求出的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機調(diào)查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到A地區(qū)用戶滿意度評分的頻率分布直方圖(如圖)和B地區(qū)用戶滿意度評分的頻數(shù)分布表.

B地區(qū)用戶滿意度評分的頻數(shù)分布表

滿意度評分分組

頻數(shù)

2

8

14

10

6

在圖中作出B地區(qū)用戶滿意度評分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可).

查看答案和解析>>

同步練習冊答案