【題目】如圖,在四棱錐中,底面是直角梯形,且,

(1)證明:平面

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1)證明見解析;(2).

【解析】

1)推導(dǎo)出PAAD,PAAB,由此能證明PA⊥平面ABCD.(2)以A為原點(diǎn),AB,AD,APx,y,z軸的正方向建立空間直角坐標(biāo)系,利用向量法能求出平面PBC與平面PAD所成銳二面角的余弦值.

(1)因?yàn)?/span>,所以,即.

同理可得.

因?yàn)?/span>.所以平面.

(2)由題意可知,兩兩垂直,故以A為原點(diǎn),分別為軸的正方向建立如圖所示的空間直角坐標(biāo)系,

,

所以.

設(shè)平面的法向量為,

,

不妨取

易得平面,所以平面的一個法向量為

記平面與平面所成銳二面角為,則

故平面與平面所成銳二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 是邊長為3的正方形, 平面與平面所成角為.

(Ⅰ)求證: 平面

(Ⅱ)設(shè)點(diǎn)是線段上一個動點(diǎn),試確定點(diǎn)的位置,使得平面,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表表示的是某款車的車速與剎車距離的關(guān)系,試分別就,三種函數(shù)關(guān)系建立數(shù)學(xué)模型,并探討最佳模擬,根據(jù)最佳模擬求車速為120km/h時的剎車距離.

車速/km/h

10

15

30

40

50

剎車距離/m

4

7

12

18

25

車速/((km/h

60

70

80

90

100

剎車距離/m

34

43

54

66

80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬奧會,推廣滑雪運(yùn)動,某滑雪場開展滑雪促銷活動.該滑雪場的收費(fèi)標(biāo)準(zhǔn)是:滑雪時間不超過1小時免費(fèi),超過1小時的部分每小時收費(fèi)標(biāo)準(zhǔn)為40元(不足1小時的部分按1小時計(jì)算).有甲、乙兩人相互獨(dú)立地來該滑雪場運(yùn)動,設(shè)甲、乙不超過1小時離開的概率分別為;1小時以上且不超過2小時離開的概率分別為;兩人滑雪時間都不會超過3小時.

(1)求甲、乙兩人所付滑雪費(fèi)用相同的概率;

(2)設(shè)甲、乙兩人所付的滑雪費(fèi)用之和為隨機(jī)變量ξ,求ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(常數(shù))滿足.

1)求的值,并對常數(shù)的不同取值討論函數(shù)奇偶性;

2)若在區(qū)間上單調(diào)遞減,求的最小值.

3)若方程有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于回歸分析與獨(dú)立性檢驗(yàn)的說法正確的是()

A.回歸分析和獨(dú)立性檢驗(yàn)沒有什么區(qū)別;

B.回歸分析是對兩個變量準(zhǔn)確關(guān)系的分析,而獨(dú)立性檢驗(yàn)是分析兩個變量之間的不確定性關(guān)系;

C.獨(dú)立性檢驗(yàn)可以確定兩個變量之間是否具有某種關(guān)系.

D.回歸分析研究兩個變量之間的相關(guān)關(guān)系,獨(dú)立性檢驗(yàn)是對兩個變量是否具有某種關(guān)系的一種檢驗(yàn);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求的值域;

(2)設(shè)函數(shù), ,若對于任意, 總存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣共有90間農(nóng)村淘寶服務(wù)站,隨機(jī)抽取5間,統(tǒng)計(jì)元旦期間的網(wǎng)購金額(單位萬元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù)

(1)根據(jù)莖葉圖計(jì)算樣本均值;

(2)若網(wǎng)購金額(單位萬元)不小于18的服務(wù)站定義為優(yōu)秀服務(wù)站,其余為非優(yōu)秀服務(wù)站.根據(jù)莖葉圖推斷90間服務(wù)站中有幾間優(yōu)秀服務(wù)站?

(3)從隨機(jī)抽取的5間服務(wù)站中再任取2間作網(wǎng)購商品的調(diào)查,求恰有1間是優(yōu)秀服務(wù)站的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在貫徹中共中央國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點(diǎn)幫扶甲、乙兩個村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo),制成下圖,其中”表示甲村貧困戶,“”表示乙村貧困戶.若,則認(rèn)定該戶為“絕對貧困戶”,若,則認(rèn)定該戶為“相對貧困戶”,若則認(rèn)定該戶為“低收入戶”;若則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從乙村的50戶中隨機(jī)選出一戶,求該戶為“絕對貧困戶”的概率;

(2)從甲村所有“今年不能脫貧的非絕對貧困戶”中任選2戶,求選出的2戶均為“低收入戶”的概率;

(3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

同步練習(xí)冊答案