【題目】已知橢圓的左、右焦點分別為、,點在橢圓上,有,橢圓的離心率為;
(1)求橢圓的標準方程;
(2)已知,過點作斜率為k(k>0)的直線與橢圓交于,不同兩點,線段的中垂線為,記的縱截距為,求的取值范圍.
【答案】(1);(2)
【解析】
(1)根據(jù)橢圓的定義得到的值,再根據(jù)離心率得到的值,從而計算出即得橢圓方程.
(2)設,聯(lián)立直線方程和橢圓方程,利用韋達定理算出的中點坐標(用表示),再計算中垂線的直線方程,從而得到,而由直線與橢圓相交可得,最后利用導數(shù)求的取值范圍.
(1)因為,所以,所以 ,
因為,所以 ,
所以 ,所以橢圓的標準方程為.
(2)由題意可知直線的斜率存在,設:,,,
聯(lián)立直線與橢圓,消去得,·
,,·
又,解得:,
·故.
設,的中點為,則,,
所以:,即,
化簡得:,
令,得,,
,當時,恒成立, 所以在上為增函數(shù),所以.
科目:高中數(shù)學 來源: 題型:
【題目】下列關(guān)于回歸分析與獨立性檢驗的說法正確的是()
A.回歸分析和獨立性檢驗沒有什么區(qū)別;
B.回歸分析是對兩個變量準確關(guān)系的分析,而獨立性檢驗是分析兩個變量之間的不確定性關(guān)系;
C.獨立性檢驗可以確定兩個變量之間是否具有某種關(guān)系.
D.回歸分析研究兩個變量之間的相關(guān)關(guān)系,獨立性檢驗是對兩個變量是否具有某種關(guān)系的一種檢驗;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)的定義域是(0,+∞),且對任意正實數(shù)x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1時,f(x)>0.
(1)求f()的值;
(2)判斷y=f(x)在(0,+∞)上的單調(diào)性并給出證明;
(3)解不等式f(2x)>f(8x-6)-1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在貫徹中共中央國務院關(guān)于精準扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標和,制成下圖,其中“”表示甲村貧困戶,“”表示乙村貧困戶.若,則認定該戶為“絕對貧困戶”,若,則認定該戶為“相對貧困戶”,若,則認定該戶為“低收入戶”;若,則認定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.
(1)從乙村的50戶中隨機選出一戶,求該戶為“絕對貧困戶”的概率;
(2)從甲村所有“今年不能脫貧的非絕對貧困戶”中任選2戶,求選出的2戶均為“低收入戶”的概率;
(3)試比較這100戶中,甲、乙兩村指標的方差的大小(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以原點為極點,以軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為:.
(1)若曲線的參數(shù)方程為(為參數(shù)),求曲線的直角坐標方程和曲線的普通方程;
(2)若曲線的參數(shù)方程為(為參數(shù)),,且曲線與曲線的交點分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知矩形ABCD中,AB=2,BC=1,F為線段CD上一動點(不含端點),現(xiàn)將△ADF沿直線AF進行翻折,在翻折過程中不可能成立的是( 。
A.存在某個位置,使直線AF與BD垂直B.存在某個位置,使直線AD與BF垂直
C.存在某個位置,使直線CF與DA垂直D.存在某個位置,使直線AB與DF垂直
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國際上鉆石的重量計算單位為克拉.已知某種鉆石的價值y(美元)與其重量x(克拉)的平方成正比,且一顆為3克拉的該種鉆石的價值為54000美元.已知,價值損失百分率切割中重量的損耗不計.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)若把一顆鉆石切割成重量比為的兩顆鉆石,求價值損失的百分率;
(3)若把一顆鉆石切割成重量分別為m克拉和n克拉的兩顆鉆石,問:當m、n滿足何種關(guān)系時,價值損失的百分率最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com