(理數(shù))使函數(shù)f(x)=2sin(2x+θ+
π
3
)是奇函數(shù),且在[0,
π
4
]
上是減函數(shù)的θ的一個(gè)值是( 。
A、
π
3
B、
3
C、
3
D、
3
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:要使函數(shù)f(x)=2sin(2x+θ+
π
3
)是奇函數(shù),應(yīng)有θ+
π
3
=kπ,k∈z,可取θ=
3
,經(jīng)檢驗(yàn)滿足條件,從而得出結(jié)論.
解答: 解:要使函數(shù)f(x)=2sin(2x+θ+
π
3
)是奇函數(shù),則有θ+
π
3
=kπ,k∈z,
故可取θ=
3

經(jīng)過(guò)檢驗(yàn),當(dāng)θ=
3
 時(shí),f(x)=2sin(2x+π)=-sin2x,滿足在[0,
π
4
]
上是減函數(shù),
故選:B.
點(diǎn)評(píng):本題主要考查正弦函數(shù)的奇偶性和單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線a∥b,且a⊥平面α,則b與α的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算(0.25) 
1
2
-[-2×(
3
7
0]2×[(-2)3] 
4
3
+(
2
-1)-1-2 
1
2
;
(2)解方程:lg(x+1)+lg(x-2)=lg4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足
(x-2)2+(y-2)2≤1
y≥2
,則
y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

擲兩枚骰子,記事件A為“向上的點(diǎn)數(shù)之和為n”.
(1)求所有n值組成的集合;
(2)n為何值時(shí)事件A的概率P(A)最大?最大值是多少?
(3)設(shè)計(jì)一個(gè)概率為0.5的事件(不用證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點(diǎn)P,求:
(1)過(guò)點(diǎn)P且過(guò)原點(diǎn)的直線方程;
(2)過(guò)點(diǎn)P且垂直于直線l3:x-2y-1=0的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校要進(jìn)行特色學(xué)校評(píng)估驗(yàn)收,有甲、乙、丙、丁、戊五位評(píng)估員將隨機(jī)取A,B,C三個(gè)班進(jìn)行隨班聽(tīng)課,要求每個(gè)班級(jí)至少有一位評(píng)估員.
(1)求甲、乙同時(shí)去A班聽(tīng)課的概率;
(2)設(shè)隨機(jī)變量ξ為這五名評(píng)估員去C班聽(tīng)課的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,sinC=
5
13
,cosB=-
4
5
,則角cosA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x>0時(shí),下列函數(shù)中最小值為2的是(  )
A、y=x+
1
x+1
+1
B、y=x2-2x+3
C、y=
x2+7x+10
x+1
D、y=lnx+
1
lnx

查看答案和解析>>

同步練習(xí)冊(cè)答案