(本小題滿分12分)已知函數(shù).
(Ⅰ)求滿足時的的集合;
(Ⅱ)當(dāng)時,求函數(shù)的最值.
(Ⅰ)(Ⅱ)最大值,最小值
解析試題分析:(Ⅰ)
由 得,
由得,
所以或,
于是或
滿足條件的的集合是
(Ⅱ)
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7b/a/kesti1.png" style="vertical-align:middle;" />,所以,
于是當(dāng),即時,取最大值
當(dāng),即時,取最小值
考點(diǎn):三角函數(shù)運(yùn)算 輔助角公式 三角函數(shù)最值
點(diǎn)評:解決本題的關(guān)鍵是把握好角之間的聯(lián)系,熟練利用誘導(dǎo)公式和兩角和的余弦公式化簡.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)時,函數(shù)的最大值與最小值的和為,求的解析式;
(Ⅲ)將滿足(Ⅱ)的函數(shù)的圖像向右平移個單位,縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉淼?
倍,再向下平移,得到函數(shù),求圖像與軸的正半軸、直線所圍成圖形的
面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在一個周期內(nèi)的圖象下圖所示。
(1)求函數(shù)的解析式;
(2)設(shè),且方程有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個根的和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)為偶函數(shù),其圖象上相鄰兩個最高點(diǎn)之間的距離為.
(1)求函數(shù)的解析式.
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)(其中,,)的最大值為2,最小正周
期為.
(1)求函數(shù)的解析式;
(2)若函數(shù)圖象上的兩點(diǎn)的橫坐標(biāo)依次為,為坐標(biāo)原點(diǎn),求△ 的
面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知最小正周期為
(1).求函數(shù)的單調(diào)遞增區(qū)間及對稱中心坐標(biāo)
(2).求函數(shù)在區(qū)間上的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;
(2)在中,分別是角的對邊,R為外接圓的半徑,且,,,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com