【題目】已知正方形的中心為直線(xiàn)x﹣y+1=0和2x+y+2=0的交點(diǎn),一條邊所在的直線(xiàn)方程是x+3y﹣5=0,求其他三邊所在直線(xiàn)的方程.
【答案】解:根據(jù)題意,得 ,解得 ,
所以正方形中心C的坐標(biāo)為(﹣1,0).
點(diǎn)C到直線(xiàn)x+3y﹣5=0的距離d= = .
設(shè)與x+3y﹣5=0平行的一邊所在直線(xiàn)的方程是x+3y+m=0(m≠﹣5),
則點(diǎn)C到直線(xiàn)x+3y+m=0的距離
d= = ,
解得m=﹣5(舍去)或m=7,
所以與x+3y﹣5=0平行的邊所在直線(xiàn)的方程是x+3y+7=0.
設(shè)與x+3y﹣5=0垂直的邊所在直線(xiàn)的方程是3x﹣y+n=0,
則點(diǎn)C到直線(xiàn)3x﹣y+n=0的距離d= = ,
解得n=﹣3或n=9,
所以與x+3y﹣5=0垂直的兩邊所在直線(xiàn)的方程分別是3x﹣y﹣3=0和3x﹣y+9=0
【解析】根據(jù)兩條直線(xiàn)相交求出正方形的中心C的坐標(biāo),根據(jù)正方形的一條邊所在的方程設(shè)出其它三邊的直線(xiàn)方程,再由C到正方形四條邊的距離相等列出方程,求出直線(xiàn)方程即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O:x2+y2=4與x軸負(fù)半軸的交點(diǎn)為A,點(diǎn)P在直線(xiàn)l: x+y﹣a=0上,過(guò)點(diǎn)P作圓O的切線(xiàn),切點(diǎn)為T(mén)
(1)若a=8,切點(diǎn)T( ,﹣1),求點(diǎn)P的坐標(biāo);
(2)若PA=2PT,求實(shí)數(shù)a的取值范圍;
(3)若不過(guò)原點(diǎn)O的直線(xiàn)與圓O交于B,C兩點(diǎn),且滿(mǎn)足直線(xiàn)OB,BC,OC的斜率依次成等比數(shù)列,求直線(xiàn)l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|2a﹣1<x<3a+1},集合B={x|﹣1<x<4}.
(1)若AB,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得A=B?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),關(guān)于實(shí)數(shù)的不等式的解集為.
(1)當(dāng)時(shí),解關(guān)于的不等式:;
(2)是否存在實(shí)數(shù),使得關(guān)于的函數(shù)()的最小值為?若存在,求實(shí)數(shù)的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿(mǎn)足f(x0)= ,則稱(chēng)函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn),例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點(diǎn),若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是( )
A.[﹣1,1]
B.(0,2)
C.[﹣2,2]
D.(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在圓x2+y2=9上任取一點(diǎn)P,過(guò)點(diǎn)P作y軸的垂線(xiàn)段PD,D為垂足,當(dāng)P為圓與y軸交點(diǎn)時(shí),P與D重合,動(dòng)點(diǎn)M滿(mǎn)足 =2 ;
(1)求點(diǎn)M的軌跡C的方程;
(2)拋物線(xiàn)C′的頂點(diǎn)在坐標(biāo)原點(diǎn),并以曲線(xiàn)C在y軸正半軸上的頂點(diǎn)為焦點(diǎn),直線(xiàn)y=x+3與拋物線(xiàn)C′交于A(yíng)、B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PC=2,E是PB上的點(diǎn).
(1)求證:平面EAC⊥平面PBC;
(2)若E是PB的中點(diǎn),求二面角P﹣AC﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=﹣x2+2x (Ⅰ)求函數(shù)f(x)在R上的解析式;
(Ⅱ)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+3x2﹣9x+m
(1)求函數(shù)f(x)=x3+3x2﹣9x+m的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[0,2]上的最大值12,求函數(shù)f(x)在該區(qū)間上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com