【題目】已知二次函數(shù),關(guān)于實(shí)數(shù)的不等式的解集為.
(1)當(dāng)時(shí),解關(guān)于的不等式:;
(2)是否存在實(shí)數(shù),使得關(guān)于的函數(shù)()的最小值為?若存在,求實(shí)數(shù)的值;若不存在,說明理由.
【答案】(1)當(dāng)時(shí),原不等式的解集為;當(dāng)時(shí),原不等式的解集為.(2)
【解析】
試題分析:(1)由二次不等式解集與二次方程根的關(guān)系得:的兩根為和,且,從而,解得,再化簡不等式,因式分解:,最后根據(jù)兩根2與大小關(guān)系,分三種情況討論不等式解集(2)先化簡函數(shù),為一元二次函數(shù),其中,再根據(jù)對(duì)稱軸與定義區(qū)間位置關(guān)系研究函數(shù)最小值:因?yàn)?/span>,所以當(dāng)時(shí),取最小值
試題解析:(1)由不等式的解集為知,關(guān)于的方程的兩根為和,且,
由根與系數(shù)關(guān)系,得∴
所以原不等式化為,
①當(dāng)時(shí),原不等式化為,且,解得或;
②當(dāng)時(shí),原不等式化為,解得且;
③當(dāng)時(shí),原不等式化為,且,解得或;
綜上所述:
當(dāng)時(shí),原不等式的解集為;
當(dāng)時(shí),原不等式的解集為.
(2)假設(shè)存在滿足條件的實(shí)數(shù),
由(1)得:,,
.
令(),則,(),
對(duì)稱軸,
因?yàn)?/span>,所以,,
所以函數(shù)在單調(diào)遞減,
所以當(dāng)時(shí),的最小值為,解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F(xiàn)1 , F2分別是橢圓C: =1(a>b>0)的左、右焦點(diǎn),A是橢圓C的上頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°
(1)求橢圓C的離心率;
(2)若a=2,求△AF1B的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),左焦點(diǎn)為F1(﹣1,0),右準(zhǔn)線方程為:x=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C上點(diǎn)N到定點(diǎn)M(m,0)(0<m<2)的距離的最小值為1,求m的值及點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>b>0)的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線 相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P(4,0),M,N是橢圓C上關(guān)于x軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接PN交橢圓C于另一點(diǎn)E,求直線PN的斜率的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,證明直線ME與x軸相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場調(diào)查,某城市的一種小商品在過去的近20天內(nèi)的銷售量(件)與價(jià)格(元)均為時(shí)間t(天)的函數(shù),且銷售量近似滿足g(t)=80﹣2t(件),價(jià)格近似滿足于 (元).
(Ⅰ)試寫出該種商品的日銷售額y與時(shí)間t(0≤t≤20)的函數(shù)表達(dá)式;
(Ⅱ)求該種商品的日銷售額y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個(gè)實(shí)心零部件的形狀是如圖所示的幾何體,其下部是底面均是正方形,側(cè)面是全等的等腰梯形的四棱臺(tái)A1B1C1D1﹣ABCD,其上是一個(gè)底面與四棱臺(tái)的上底面重合,側(cè)面是全等的矩形的四棱柱ABCD﹣A2B2C2D2 .
(1)證明:直線B1D1⊥平面ACC2A2;
(2)現(xiàn)需要對(duì)該零部件表面進(jìn)行防腐處理,已知AB=10,A1B1=20,AA2=30,AA1=13(單位:厘米),每平方厘米的加工處理費(fèi)為0.20元,需加工處理費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的中心為直線x﹣y+1=0和2x+y+2=0的交點(diǎn),一條邊所在的直線方程是x+3y﹣5=0,求其他三邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)點(diǎn)P滿足 + =2
(1)求動(dòng)點(diǎn)P的軌跡F1 , F2的方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為 ,求△OAB面 積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com