323和391的最大公約數(shù)是( 。
A、21B、19C、17D、13
考點:用輾轉(zhuǎn)相除計算最大公約數(shù)
專題:算法和程序框圖
分析:根據(jù)輾轉(zhuǎn)相除法計算即可:首先用大數(shù)除以小數(shù),得到商和余數(shù),然后再用上面的除數(shù)除以余數(shù),又得到新的余數(shù),如此繼續(xù)做下去,直到剛好能夠整除為止,得到兩個數(shù)的最大公約數(shù).
解答: 解:∵391÷323=1…68
323÷68=4…51
68÷51=1…17
51÷17=3
∴323和391的最大公約數(shù)是17.
故選:C.
點評:本題主要考查了“輾轉(zhuǎn)相除法”,要熟練掌握其算法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中,表示同一函數(shù)的是( 。
A、y=
3x3
與y=
x2
B、y=
x2-1
x+1
與y=x-1
C、y=lnex與y=elnx
D、y=x0與y=
1
x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三菱柱的側(cè)棱與底面垂直,且底面是邊長為2的等邊三角形,其正視圖(如圖)的面積為8,則該三棱柱的體積為( 。
A、4
B、4
3
C、8
3
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于問題:“兩兩相交且任三條不共點的n條直線把平面分為f(n)部分”,我們由歸納推理得到f(10)=( 。
A、54B、55C、56D、57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、函數(shù)的極大值就是函數(shù)的最大值
B、函數(shù)的極小值就是函數(shù)的最小值
C、函數(shù)的最值一定是極值
D、在閉區(qū)間上的連續(xù)函數(shù)一定存在最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),右焦點F到漸近線的距離小于等于a,則該雙曲線離心率的取值范圍為( 。
A、(
2
,+∞)
B、[
2
,+∞)
C、(1,
2
]
D、(1,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=7,b=8,cosC=
13
14
,則c=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱維P-ABCD中,側(cè)面PCD⊥底面ABCD.四邊形ABCD是等腰梯形.AB∥CD.∠ADC=∠PDC=
π
4
.AB=1,AD=PD=
2
,CD=3.E是CD上一點.PE⊥CD.
(1)求證:平面PBE⊥平面PBC;
(2)設(shè)E為側(cè)棱PC上異于端點的一點,
PF
PC
,λ的值,使得二面角F-BE-P的余數(shù)為
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P0(0,a1)、Pn(an,an+1)(?n∈N*)都在直線2x-y+1=0上.
(1)求證:{an+1}是等比數(shù)列;
(2)求數(shù)列{
n
an+1
}(n∈N*)的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案