【題目】某大學(xué)為調(diào)查來自南方和北方的同齡大學(xué)生的身高差異,從2016級的年齡在18~19歲之間的大學(xué)生中隨機(jī)抽取了來自南方和北方的大學(xué)生各10名,測量他們的身高,量出的身高如下(單位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根據(jù)抽測結(jié)果,畫出莖葉圖,對來自南方和北方的大學(xué)生的身高作比較,寫出統(tǒng)計結(jié)論.

(2)設(shè)抽測的10名南方大學(xué)生的平均身高為cm,將10名南方大學(xué)生的身高依次輸入如圖所示的程序框圖進(jìn)行運算,問輸出的s大小為多少?并說明s的統(tǒng)計學(xué)意義。

【答案】(1)見解析部分;(2)s=42.6,s表示10位南方大學(xué)生身高的方差,是描述身高的離散程度的量.s值越小,表示身高越整齊,s值越大,表示身高越參差不齊.

【解析】

(1)根據(jù)題意畫出莖葉圖即可,然后根據(jù)莖葉圖寫出統(tǒng)計結(jié)論.(2)由框圖可得s表示樣本數(shù)據(jù)的方差,然后根據(jù)題中數(shù)據(jù)求出s即可,然后說明它的統(tǒng)計學(xué)意義

(1)由題意畫出莖葉圖如圖所示.

統(tǒng)計結(jié)論(給出下述四個結(jié)論供參考):

北方大學(xué)生的平均身高大于南方大學(xué)生的平均身高;

南方大學(xué)生的身高比北方大學(xué)生的身高更整齊;

南方大學(xué)生的身高的中位數(shù)為169.5 cm,北方大學(xué)生的身高的中位數(shù)是172 cm;

南方大學(xué)生的身高基本上是對稱的,而且大多數(shù)集中在均值附近,北方大學(xué)生的身高分布較為分散.

(2)由程序框圖可得s表示10位南方大學(xué)生身高的方差

由題意得10位南方大學(xué)生身高的平均數(shù)

故方差為

s是描述身高的離散程度的量,它的統(tǒng)計學(xué)意義是s的值越小,表示身高越整齊,s的值越大,表示身高越參差不齊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知0<x<1,0<y<1, 求證 + + + ≥2 ,并求使等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中.∠BAD=120°,AB=1,AD=2,點P是線段BC上的一個動點,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角梯形所在的平面垂直于平面,,,.

(1)若的中點,求證:平面

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程 曲線C1的參數(shù)方程為 (α為參數(shù)),在以原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρcos2θ=sinθ.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)若射線l:y=kx(x≥0)與曲線C1 , C2的交點分別為A,B(A,B異于原點),當(dāng)斜率k∈(1, ]時,求|OA||OB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:關(guān)于x的一元二次方程有兩個不相等的實數(shù)根;命題q:關(guān)于x的一元二次方程對于任意實數(shù)a都沒有實數(shù)根.

若命題p為真命題,求實數(shù)m的取值范圍;

若命題p和命題q中有且只有一個為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為函數(shù)的導(dǎo)函數(shù), .

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時, 恒成立,求的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在點處的切線方程為,求的值;

(2)當(dāng)時,在區(qū)間上至少存在一個,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項和記為Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)當(dāng)t為何值時,數(shù)列{an}為等比數(shù)列?
(2)在(1)的條件下,若等差數(shù)列{bn}的前n項和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn

查看答案和解析>>

同步練習(xí)冊答案