【題目】已知命題p:關于x的一元二次方程有兩個不相等的實數根;命題q:關于x的一元二次方程對于任意實數a都沒有實數根.
若命題p為真命題,求實數m的取值范圍;
若命題p和命題q中有且只有一個為真命題,求實數m的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖是函數y=Asin(ωx+φ)(A<0,ω>0,|φ|≤ )圖象的一部分.為了得到這個函數的圖象,只要將y=sinx(x∈R)的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
B.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
D.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C所對的邊分別為a,b,c,已知1+ = . (I)求A;
(Ⅱ)若BC邊上的中線AM=2 ,高線AH= ,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,點是直線上的動點,定點 點為的中點,動點滿足.
(1)求點的軌跡的方程
(2)過點的直線交軌跡于兩點,為上任意一點,直線交于兩點,以為直徑的圓是否過軸上的定點? 若過定點,求出定點的坐標;若不過定點,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學為調查來自南方和北方的同齡大學生的身高差異,從2016級的年齡在18~19歲之間的大學生中隨機抽取了來自南方和北方的大學生各10名,測量他們的身高,量出的身高如下(單位:cm):
南方:158,170,166,169,180,175,171,176,162,163.
北方:183,173,169,163,179,171,157,175,184,166.
(1)根據抽測結果,畫出莖葉圖,對來自南方和北方的大學生的身高作比較,寫出統計結論.
(2)設抽測的10名南方大學生的平均身高為cm,將10名南方大學生的身高依次輸入如圖所示的程序框圖進行運算,問輸出的s大小為多少?并說明s的統計學意義。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合P的元素個數為個且元素為正整數,將集合P分成元素個數相同且兩兩沒有公共元素的三個集合A、B、C,即 ,,,,其中 ,, 若集合A、B、C中的元素滿足 ,,,2,,則稱集合P為“完美集合”.
若集合2,,2,3,4,5,,判斷集合P和集合Q是否為“完美集合”?并說明理由;
已知集合x,3,4,5,為“完美集合”,求正整數x的值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M、N兩點.
(1)求k的取值范圍;
(2)若 =12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班從6名干部中(其中男生4人,女生2人)選3人參加學校的義務勞動.
(1)設所選3人中女生人數為ξ,求ξ的分布列及Eξ;
(2)求男生甲或女生乙被選中的概率;
(3)在男生甲被選中的情況下,求女生乙也被選中的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com