【題目】如圖,某生態(tài)園將一塊三角形地的一角開辟為水果園,已知角為, 的長(zhǎng)度均大于200米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.
(1)若圍墻、總長(zhǎng)度為200米,如何可使得三角形地塊面積最大?
(2)已知竹籬笆長(zhǎng)為米, 段圍墻高1米, 段圍墻高2米,造價(jià)均為每平方米100元,若,求圍墻總造價(jià)的取值范圍.
【答案】(1) (米), (米2);(2).
【解析】試題分析:
(1)設(shè) ,利用題意列出面積的表達(dá)式,最后利用均值不等式求解最值即可,注意討論等號(hào)成立的條件和實(shí)際問題的定義域;
(2)利用題意結(jié)合正弦定理求得圍墻造價(jià)的函數(shù)解析式,利用三角形的性質(zhì)求得 的范圍即可求得造價(jià)的取值范圍.
試題解析:
設(shè) (米),則,所以 (米2)
當(dāng)且僅當(dāng)時(shí),取等號(hào)。即 (米), (米2)
(2)由正弦定理, 得
故圍墻總造價(jià)
因?yàn)?/span>, 所以,
所以圍墻總造價(jià)的取值范圍為 (元)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若對(duì)任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn), ,并且直線平分圓.
(1)求圓的方程;
(2)若直線與圓交于兩點(diǎn),是否存在直線,使得(為坐標(biāo)原點(diǎn)),若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣lnx.
(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間:
(3)設(shè)函數(shù)g(x)=f(x)﹣x2+ax,a>0,若x∈(O,e]時(shí),g(x)的最小值是3,求實(shí)數(shù)a的值.(e為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,且a1 , a4 , a13成等比數(shù)列,數(shù)列{ }是首項(xiàng)為1,公比為3的等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an+bn}的前n項(xiàng)和Rn , 若不等式 ≤λ3n+n+3對(duì)n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是等邊三角形,邊長(zhǎng)為4, 邊的中點(diǎn)為,橢圓以, 為左、右兩焦點(diǎn),且經(jīng)過、兩點(diǎn)。
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)且軸不垂直的直線交橢圓于, 兩點(diǎn),求證:直線與的交點(diǎn)在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點(diǎn),直線與交與, ,求, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com