如圖,
是半圓
的直徑,
是半圓
上除
、
外的一個動點,
平面
,
,
,
,
.
⑴證明:平面
平面
;
⑵試探究當(dāng)
在什么位置時三棱錐
的體積取得最大值,請說明理由并求出這個最大值.
⑴
是直徑,所以
,因為
平面
,
,所以
平面
因為
,又因為
,所以
,所以
平面ACD,因為
平面
,所以平面
平面
⑵當(dāng)
為半圓弧中點時三棱錐
的體積取得最大值,最大值為
試題分析:⑴因為
是直徑,所以
,因為
平面
,
,因為
,所以
平面
因為
,又因為
,所以四邊形
是平行四邊形,所以
,所以
平面,因為
平面
,所以平面
平面
⑵依題意,
,
由⑴知
,
,
,等號當(dāng)且僅當(dāng)
時成立,所以當(dāng)
為半圓弧中點時三棱錐
的
體積取得最大值,最大值為
(備注:此時,
,
,設(shè)三棱錐
的高為
,則
,
).
點評:第一問要證明兩面垂直只需證明其中一個平面內(nèi)的一條直線垂直于另外一面,即轉(zhuǎn)化為證明線面垂直;第二問首先采用等體積法將所求椎體的體積轉(zhuǎn)化求解的角度,而后借助于均值不等式求得最大值
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
中,
底面
,四邊形
中,
,
,
,
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)設(shè)
.
(ⅰ) 若直線
與平面
所成的角為
,求線段
的長;
(ⅱ) 在線段
上是否存在一個點
,使得點
到點
的距離都相等?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱柱ABC-A
1B
1C
1中,E,F(xiàn),G,H分別是AB,AC,A
1B
1,A
1C
1的中點,求證:
(1)B,C,H,G四點共面;
(2)平面EFA
1∥平面BCHG.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知棱柱
的底面是菱形,且
面
,
,
,
為棱
的中點,
為線段
的中點,
(Ⅰ)求證:
面
;
(Ⅱ)判斷直線
與平面
的位置關(guān)系,并證明你的結(jié)論;
(Ⅲ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐
中,平面
平面
,
,
,
,
是
中點,
是
中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐P-ABCD的底面為正方形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,
(I) 求證:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
正方體
的棱線長為1,面對角線
上有兩個動點E,F(xiàn),且
,則下列四個結(jié)論中①
②
平面
③三棱錐
的體積為定值 ④異面直線
所成的角為定值,其中正確的個數(shù)是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
以下對于幾何體的描述,錯誤的是( )
A.以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的旋轉(zhuǎn)體叫做球 |
B.一個等腰三角形繞著底邊上的高所在直線旋轉(zhuǎn)180º形成的封閉曲面所圍成的圖形叫做圓錐 |
C.用平面去截圓錐,底面與截面之間的部分叫做圓臺 |
D.以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的面所圍成的旋轉(zhuǎn)體叫做圓柱 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
三視圖如下的幾何體的體積為
。
查看答案和解析>>