【題目】如圖,已知三棱錐P-ABC中,ACB=90°,CB=4,AB=20,D為AB中點(diǎn),M為PB中點(diǎn),且PDB是正三角形,PAPC。

.

(1)求證:DM平面PAC;

(2)求證:平面PAC平面ABC;

(3)求三棱錐M-BCD的體積

【答案】(1)詳見解析,(2)詳見解析,(3)

【解析】

試題分析:(1)證線面平行找線線平行,本題有中點(diǎn)條件,可利用中位線性質(zhì).即DMAP,寫定理?xiàng)l件時(shí)需完整,因?yàn)槿羧鄙貲M面APC,,則DM可能在面PAC內(nèi),若缺少AP面APC,則DM與面PAC位置關(guān)系不定.(2)證面面垂直關(guān)鍵找線面垂直.可由面面垂直性質(zhì)定理探討,因?yàn)锽C垂直AC,而AC為兩平面的交線,所以應(yīng)有BC垂直于平面PAC,這就是本題證明的首要目標(biāo).因?yàn)锽C垂直AC,因此只需證明BC垂直平面PAC另一條直線.這又要利用線面垂直與線線垂直關(guān)系轉(zhuǎn)化.首先將題目中等量關(guān)系轉(zhuǎn)化為垂直條件,即DMPB,從而有PAPB,而PAPC,所以PA面PBC,因此PABC.(3)求錐的體積關(guān)鍵找出高,有(2)有PA面PBC,因此DM為高,利用體積公式可求得

試題解析:(1)D為AB中點(diǎn),M為PB中點(diǎn)

DMAP

DM面APC,AP面APC

DM面PAC

(2)PDB是正三角形,M為PB中點(diǎn)

DMPB,又DMAP,PAPB

PAPC,PBPC=P,PA面PBC

BC面PBC,PABC

ACB=90°,BCAC

ACPA=A,BC面PAC

BC面ABC,面PAC面ABC

(3)AB=20,D為AB中點(diǎn),AP面PBC

PD=10

PDB為正三角形,DM=5

BC=4,PB=10,PC=2

SPBC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超過的部分按議價(jià)收費(fèi),為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

1求直方圖中的值;

2設(shè)該市有30萬居民,估計(jì)全市居民中月均用量不低于3噸的人數(shù),并說明理由;

3若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn),估計(jì)的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|-1x2},B={x|m-1x2m+1},已知BA.

(1)當(dāng)xN時(shí),求集合A的子集的個(gè)數(shù);

(2)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碩族,否則稱為非低碳族,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

(1)補(bǔ)全頻率分布直方圖并求的值(直接寫結(jié)果);

(2)從年齡段在低碳族中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取2人作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中至少有1人年齡在歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,為兩非零有理數(shù)列即對(duì)任意的,均為有理數(shù)為一無理數(shù)列即對(duì)任意的,為無理數(shù)).

1已知,并且對(duì)任意的恒成立,試求的通項(xiàng)公式

2為有理數(shù)列,試證明:對(duì)任意的,恒成立的充要條件為

3已知,對(duì)任意的恒成立,試計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1是函數(shù)的極值點(diǎn),1和是函數(shù)的兩個(gè)不同零點(diǎn),且,求

2若對(duì)任意,都存在為自然對(duì)數(shù)的底數(shù),使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)50元,未售出的產(chǎn)品,每盒虧損30元根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示該同學(xué)為這個(gè)開學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以單位:盒,表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,單位:元表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn)

I根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量的眾數(shù)和中位數(shù);

II表示為的函數(shù);

III根據(jù)直方圖估計(jì)利潤(rùn)不少于4800元的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,上頂點(diǎn)為,左、右焦點(diǎn)分別為,線段的中點(diǎn)分別為,且是面積為的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;

(2)過作直線交橢圓于兩點(diǎn),使,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案