方程+=1({1,2,3,4, ,2013})的曲線中,所有圓面積的和等于       ,離心率最小的橢圓方程為                      .

 

【答案】

;   +=1和+=1,

【解析】

試題分析:方程+=1({1,2,3,4, ,2013})的曲線中,那么圓的方程中a=b,可知所有的圓的半徑為1,2,3,….2013,其面積加起來得到為,而對于離心率最小,即為e ,當(dāng)b:a最大時,則其離心率最小,故可知+=1和+=1,故答案為+=1和+=1。

考點(diǎn):圓的面積,橢圓方程

點(diǎn)評:解決的關(guān)鍵是對于圓的方程和橢圓方程的理解 和靈活的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省長沙市高三高考模擬理科數(shù)學(xué)試卷(解析版) 題型:填空題

方程+=1({1,2,3,4,…,2013})的曲線中,所有圓面積的和等于       ,離心率最小的橢圓方程為                      .

 

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�