(本題滿分12分)如圖,在多面體
ABCDE中,
,
,
是邊長為2的等邊三角形,
,
CD與平面
ABDE所成角的正弦值為
.
(1)在線段
DC上是否存在一點
F,使得
,若存在,求線段
DF的長度,若不存在,說明理由;
(2)求二面角
的平面角的余弦值.
試題分析:(Ⅰ)取AB的中點G,連結(jié)CG,則
,
又
,可得
,所以
,
所以
,CG=
,故CD=
……2分
取CD的中點為F,BC的中點為H,因為
,
,所以
為平行四邊形,得
,………………………………4分
平面
∴
存在F為CD中點,DF=
時,使得
……6分
(Ⅱ)如圖建立空間直角坐標系,則
、
、
、
,從而
,
,
。
設
為平面
的法向量,
則
可以取
……………………8分
設
為平面
的法向量,
則
取
……10分
因此,
,…………11分
故二面角
的余弦值為
……………12分
點評:求解和證明立體幾何問題一方面可以直接利用幾何方法,通過證明或找到線面之間的關系,依據(jù)判定定理或性質(zhì)進行證明求解.但是本法的難在證明線面關系,難在作角、找角.空間向量方法是證明垂直、平行、求角的好方法,因其避開了“做,找”,所以其應用的難度大大的降低了.利用空間向量法證明垂直,即證明向量的數(shù)量積等于0;若求二面角則通過兩個半平面的法向量的夾角進行求解判斷。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)
已知:如圖,
中,
,
,
是角平分線。求證:
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
以下五個命題中,正確命題的個數(shù)是________.
① 不共面的四點中,其中任意三點不共線;
② 若
∥
;
③ 對于四面體
ABCD,任何三個面的面積之和都大于第四個面的面積;
④ 對于四面體
ABCD,相對棱
AB 與
CD 所在的直線是異面直線;
⑤ 各個面都是三角形的幾何體是三棱錐。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖:直三棱柱
ABC—
中,
,
,D為AB中點。
(1)求證:
;
(2)求證:
∥平面
;
(3)求C
1到平面A
1CD的距離。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知正三棱柱ABC-A1B1C1的各條棱長都相等,M是側(cè)棱CC1的中點,則異面直線AB1和BM所成的角的大小是______________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,在三棱錐
中,
、
、
兩兩垂直, 且
.設
是底面
內(nèi)一點,定義
,其中
、
、
分別是三棱錐M-PAB、 三棱錐M-PBC、三棱錐M-PCA的體積.若
,且
恒成立,則正實數(shù)
的最小值為__
_ _
__.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
給出下列命題:
①如果
,
是兩條直線,且
//
,那么
平行于經(jīng)過
的任何平面;
②如果平面
不垂直于平面
,那么平面
內(nèi)一定不存在直線垂直于平面
;
③若直線
,
是異面直線,直線
,
是異面直線,則直線
,
也是異面直線;
④已知平面
⊥平面
,且
∩
=
,若
⊥
,則
⊥平面
;
⑤已知直線
⊥平面
,直線
在平面
內(nèi),
//
,則
⊥
.
其中正確命題的序號是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在空間中,設
是三條不同的直線,
是兩個不同的平面,在下列命題:
①若
兩兩相交,則
確定一個平面
②若
,且
,則
③若
,且
,則
④若
,且
,則
其中正確的命題的個數(shù)是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
四棱錐
,面
⊥面
.側(cè)面
是以
為直角頂點的等腰直角三角形,底面
為直角梯形,
,
∥
,
⊥
,
為
上一點,且
.
(Ⅰ)求證
⊥
;
(Ⅱ)求二面角
的正弦值.
查看答案和解析>>