【題目】已知函數(shù)(),.
(1)當(dāng)在處的切線與直線垂直時(shí),方程有兩相異實(shí)數(shù)根,求的取值范圍;
(2)若冪函數(shù)的圖象關(guān)于軸對(duì)稱,求使不等式在上恒成立的的取值范圍.
【答案】(1);(2)
【解析】分析:(1)由題設(shè)可得,令(),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得,從而可得結(jié)果;(2)由題設(shè)有,令(),兩次求導(dǎo),分兩種情況討論,可得①時(shí);②時(shí),,綜合兩種情況可得結(jié)果.
詳解:(1)由題設(shè)可得,令()
則令得.
遞減 | 極小值 | 遞增 |
∵,,,
且有兩個(gè)不等實(shí)根,∴,
即
∴
(2)由題設(shè)有,令(),
則,令,則
又,∴.∴在在單調(diào)遞增.
又,
①,即時(shí),.
所以在內(nèi)單調(diào)遞增,,所以
②,即時(shí),由在內(nèi)單調(diào)遞增,
且∵,.
∴使得.
遞減 | 極小值 | 遞增 |
所以的最小值為.
又,所以 .
因此,要使當(dāng)時(shí),恒成立,只需,即即可.
解得,此時(shí),可得,
以下求出的取值范圍.
設(shè),,得.
所以在上單調(diào)遞減,從而.
綜上①②所述,的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)的影響,詢問(wèn)了 30 名同學(xué),得到如下的 列聯(lián)表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò) 0.005 的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)有影響?
(Ⅱ)從使用學(xué)習(xí)成績(jī)優(yōu)秀的 12 名同學(xué)中,隨機(jī)抽取 2 名同學(xué),求抽到不使用智能手機(jī)的人數(shù)的分布列及數(shù)學(xué)期望.智能手機(jī)的 20 名同學(xué)中,按分層抽樣的方法選出 5 名同學(xué),求所抽取的 5 名同學(xué)中“學(xué)習(xí)成績(jī)優(yōu)秀”和“學(xué)習(xí)成績(jī)不優(yōu)秀”的人數(shù);
(Ⅲ)從問(wèn)題(Ⅱ)中倍抽取的 5 名同學(xué),再隨機(jī)抽取 3 名同學(xué),試求抽取 3 名同學(xué)中恰有 2 名同學(xué)為“學(xué)習(xí)成績(jī)不優(yōu)秀”的概率.
參考公式:,其中
參考數(shù)據(jù):
0.05 | 0,。025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某班級(jí)50名學(xué)生訂閱數(shù)學(xué)、語(yǔ)文、英語(yǔ)學(xué)習(xí)資料的情況,其中A表示訂閱數(shù)學(xué)學(xué)習(xí)資料的學(xué)生,B表示訂閱語(yǔ)文學(xué)習(xí)資料的學(xué)生,C表示訂閱英語(yǔ)學(xué)習(xí)資料的學(xué)生
(1)從這個(gè)班任意選擇一名學(xué)生,用自然語(yǔ)言描述1,4,5,8各區(qū)域所代表的事件;
(2)用A,B,C表示下列事件:
①恰好訂閱一種學(xué)習(xí)資料;
②沒(méi)有訂閱任何學(xué)習(xí)資料.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的焦點(diǎn)為,拋物線上兩點(diǎn),在拋物線的準(zhǔn)線上的射影分別為.
(1)如圖,若點(diǎn)在線段上,過(guò)作的平行線與拋物線準(zhǔn)線交于,證明:是的中點(diǎn);
(2)如圖,若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F為拋物線C:x2=2py (p>0) 的焦點(diǎn),點(diǎn)A(m,3)在拋物線C上,且|AF|=5,若點(diǎn)P是拋物線C上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P到直線的距離為,設(shè)點(diǎn)P到直線的距離為.
(1)求拋物線C的方程;
(2) 求的最小值;
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)當(dāng)a>1時(shí),求使f(x)>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com