已知實(shí)數(shù)1,a,b,c,16為等比數(shù)列,a,b存在等比中項(xiàng)m,b,c的等差中項(xiàng)為n,則m+n=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:由實(shí)數(shù)1,a,b,c,16為等比數(shù)列,且a,b存在等比中項(xiàng)求出數(shù)列1,a,b,c,16的公比,則a,b,c可求,由等比中項(xiàng)和等差中項(xiàng)的概念求出m和n,則答案可求.
解答: 解:由1,a,b,c,16為等比數(shù)列,設(shè)其公比為q,則16=1×q4,所以q=±2.
又a,b存在等比中項(xiàng)m,所以q>0,則q=2.
所以a=1×q=1×2=2,b=1×q2=1×22=4,c=1×q3=1×23=8.
則m=±2
2
.n=
b+c
2
=6.
則m+n=6±2
2

故答案為:6±2
2
點(diǎn)評(píng):本題考查了等差數(shù)列和等比數(shù)列的通項(xiàng)公式,考查了等差中項(xiàng)和等比中項(xiàng)的概念,若已知等比數(shù)列的兩項(xiàng),則等比數(shù)列的所有量都可以求出,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為改變閩江口環(huán)境,加強(qiáng)對(duì)化工廠污染源處理,某政協(xié)委員針對(duì)閩江口環(huán)境狀況進(jìn)行了實(shí)地調(diào)研.據(jù)測定,該處的污染指數(shù)y與到污染源的距離x成反比,同時(shí)與附近污染源的強(qiáng)度m成正比,且比例系數(shù)為k,即y=
km
x
,若該處與污染源的距離為4km,污染源的強(qiáng)度為2時(shí),則污染指數(shù)y等于1.現(xiàn)已知相距36km的A,B兩家化工廠(污染源)的污染強(qiáng)度分別為正數(shù)a、b,它們連線上任意一點(diǎn)C處的污染指數(shù)y等于兩化工廠對(duì)該處的污染指數(shù)之和.設(shè)AC=x(km).(0<x<36)
(1)試將y表示為x的函數(shù);
(2)現(xiàn)準(zhǔn)備在A,B連線上C處建健身房,若a=1,b=25時(shí),請(qǐng)問C在何處是最佳選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=-2y的焦點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:當(dāng)x>0時(shí),f(x)=-log2x,則f(f(-
1
4
))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足條件a1=1,an-1-an=anan-1,則a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin(x+φ)(0<φ<π)是偶函數(shù),則函數(shù)f(x)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線C:y2=2px(p>0)與雙曲線C′:
x2
3
-y2=1的一個(gè)焦點(diǎn)相同,則拋物線的C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足xy+1=2x+y,且x>1,則(x+1)(y+2)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3x≤81},B=(-∞,a),若A∪B=B,則實(shí)數(shù)a的取值范圍是(  )
A、[4,+∞)
B、(0,4]
C、(4,+∞)
D、(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案