4.已知f′(x)是f(x)的導(dǎo)數(shù),且y=xf′(x)的圖象如圖所示,則下列關(guān)于f(x)說法正確的是( 。
A.在(-∞,0)上是增函數(shù)B.在(-1,1)上是增函數(shù)
C.在(-1,0)上是增函數(shù)D.在(1,+∞)上是減函數(shù)

分析 結(jié)合圖象求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:結(jié)合圖象:x∈(-∞,-1)時,xf′(x)<0,故f′(x)>0,
x∈(-1,0)時,xf′(x)>0,故f′(x)<0,
x∈(0,1)時,xf′(x)>0,故f′(x)>0,
x∈(1,+∞)時,xf′(x)<0,故f′(x)<0,
故f(x)在(-∞,-1)遞增,在(-1,0)遞減,在(0,1)遞增,在(1,+∞)遞減;
故選:D.

點評 本題考查了數(shù)形結(jié)合思想,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的單調(diào)性問題,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=(x2+x+m)ex(其中m∈R,e為自然對數(shù)的底數(shù)).若在x=-3處函數(shù)f (x)有極大值,則函數(shù)f (x)的極小值是-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.“所有9的倍數(shù)的數(shù)都是3的倍數(shù),5不是9的倍數(shù),故5不是3的倍數(shù).”上述推理( 。
A.是三段論推理,但大前提錯B.是三段論推理,但小前提錯
C.不是三段論推理,但結(jié)論正確D.不是三段論推理,且結(jié)論不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)A(3,4,1),B(1,0,5),則AB的中點M的坐標為(2,2,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知向量$\overrightarrow a=(4,3)$,$\overrightarrow b=(1,2)$.
(1)設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角為θ,求cosθ的值;
(2)若$\overrightarrow a-λ\overrightarrow b$與$2\overrightarrow a+\overrightarrow b$垂直,求實數(shù)λ的值..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知$f(x)=sin(\frac{π}{6}-2x)+\frac{3}{2},x∈R$
(1)求函數(shù)f(x)的最大值及取得最大值時自變量x的集合;
(2)求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.4個唱歌節(jié)目,2個跳舞節(jié)目,任意排一張演出節(jié)目單,2個舞蹈節(jié)目一起演出的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.某幾何體的三視圖如圖,其正視圖中的曲線部分為半圓,則該幾何體的體積是( 。
A.4+$\frac{3}{2}$πB.6+$\frac{3}{2}$πC.6+3πD.12+$\frac{3}{2}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,且$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\frac{5}{2}\overrightarrow b)$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習冊答案