【題目】2017年1月1日,作為貴陽(yáng)市打造“千園之城”27個(gè)示范性公園之一的泉湖公園正式開(kāi)園.元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項(xiàng)目向全體市民開(kāi)放.現(xiàn)從到公園游覽的市民中隨機(jī)抽取了60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過(guò)1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?

愿意

不愿意

總計(jì)

男生

女生

總計(jì)

(2)現(xiàn)用分層抽樣的方法從愿意接受挑戰(zhàn)的市民中選取7名挑戰(zhàn)者,再?gòu)闹谐槿?人參加挑戰(zhàn),求抽取的2人中至少有一名男生的概率.

參考數(shù)據(jù)及公式:

0.1

0.05

0.025

0.01

2.706

3.841

5.024

6.635

.

【答案】(1)圖表見(jiàn)解析;不能認(rèn)為在犯錯(cuò)誤的概率不超過(guò)1%的情況下愿意接受挑戰(zhàn)與性別有關(guān);(2).

【解析】試題分析:(1)利用題意,填寫(xiě)出的列聯(lián)表,利用公式計(jì)算的值,借助參考數(shù)據(jù)得出結(jié)論;

(2)設(shè)名男生分別為,4名女生分別為,列出基本事件構(gòu)成的空間,得到基本事件的個(gè)數(shù),找出抽取的2人中至少有一名男生所包含基本事件的個(gè)數(shù),利用古典概型的計(jì)算公式,即可求解概率.

試題解析:

解:(1)

愿意

不愿意

總計(jì)

男生

15

45

60

女生

20

20

40

總計(jì)

35

65

100

則不能認(rèn)為在犯錯(cuò)誤的概率不超過(guò)1%的情況下愿意接受挑戰(zhàn)與性別有關(guān).

(2)據(jù)第一問(wèn)可知,用分層抽樣的方法從愿意接受挑戰(zhàn)的市民中選取7名,其中男生3名,女生4名,不妨設(shè)3名男生分別為1,2,3,4名女生分別為.

從中任取兩人,所有可能出現(xiàn)的情況如下:

,

,共21種.

其中抽取的2人中至少有一名男生有15種.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A是由a-2,2a2+5a,12三個(gè)元素構(gòu)成的,且-3∈A,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某居民小區(qū)要建造一座八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成的,是面積為200平方米的十字形地帶.計(jì)劃在正方MNPQ上建一座花壇,造價(jià)是每平方米4 200元,在四個(gè)相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價(jià)是每平方米210元,再在四個(gè)空角上鋪上草坪,造價(jià)是每平方米80元.

(1)設(shè)總造價(jià)是S元,AD長(zhǎng)為x米,試建立S關(guān)于x的函數(shù)關(guān)系式;

(2)當(dāng)x為何值時(shí),S最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000,每生產(chǎn)一臺(tái)儀器需增加投入100,已知總收益滿(mǎn)足函數(shù):

R(x)

其中x是儀器的月產(chǎn)量.

(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù)f(x);

(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲得利潤(rùn)最大?最大利潤(rùn)為多少元?(總收益=總成本+利潤(rùn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2.如果函數(shù)g(x)=f(x)-(x+m)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的值為( )

A.2k(k∈Z) B.2k或2k+ (k∈Z)

C.0 D.2k或2k- (k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推動(dòng)乒乓球運(yùn)動(dòng)的發(fā)展,某乒乓球比賽允許不同協(xié)會(huì)的運(yùn)動(dòng)員組隊(duì)參加.現(xiàn)有來(lái)自甲協(xié)會(huì)的運(yùn)動(dòng)員名,其中種子選手名;乙協(xié)會(huì)的運(yùn)動(dòng)員名,其中種子選手名.從這名運(yùn)動(dòng)員中隨機(jī)選擇人參加比賽.

(1)設(shè)為事件“選出的人中恰有名種子選手,且這名種子選手來(lái)自同一個(gè)協(xié)會(huì)”求事件發(fā)生的概率;

(2)設(shè)為選出的人中種子選手的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,,設(shè)函數(shù)

1)若函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),且時(shí),求函數(shù)的單調(diào)增區(qū)間;

2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐PABCD的底面ABCD是正方形,EF分別為ACPB上的點(diǎn),它的直觀圖,正視圖,側(cè)視圖如圖所示.

(1)EF與平面ABCD所成角的大。

(2)求二面角BPAC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為拋物線上一個(gè)動(dòng)點(diǎn), 為圓上一個(gè)動(dòng)點(diǎn),那么點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線的準(zhǔn)線距離之和的最小值是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案