一個幾何體的三視圖如圖所示,其中俯視圖與左視圖均為半徑是2的圓,則這個幾何體的表面積是
 
考點:由三視圖求面積、體積
專題:計算題
分析:幾何體是球體切去
1
4
后余下的部分,球的半徑為2,代入球的表面積公式可得答案.
解答: 解:由三視圖知:幾何體是球體切去
1
4
后余下的部分,
球的半徑為2,∴幾何體的表面積S=(1-
1
4
)×4π×22+π×22=16π.
故答案為:16π.
點評:本題考查了由三視圖求幾何體的表面積,判斷幾何體的形狀是解答此類問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,若a=1且cosA=
4
5
,則△ABC的外接圓的直徑等于( 。
A、
4
5
B、
5
4
C、
3
5
D、
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
a
b
,其中向量,x∈R.
a
=(sin2x,
3
),
b
=(-1,sin(2x-
π
6
))
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(Ⅱ)將函數(shù)f(x)的圖象沿x軸向右平移,則至少平移多少個單位長度,才能使得到的函數(shù)g(x)的圖象關(guān)于y軸對稱?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ax-2-lnx(a∈R).
(Ⅰ)若f(x)在點(e,f(e))處的切線為x-ey-2e=0,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當x>0時,求證:f(x)-ax+ex>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四棱錐P-ABCD的五個頂點在同一球面上,若該正四棱錐的底面邊長為2,側(cè)棱長為
6
,則這個球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)[x]表示不超過x的最大整數(shù),如:[π]=3,[-4.3]=-5.給出下列命題:
①對任意實數(shù)x,都有[x]-x≤0;
②若x1≤x2,則[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函數(shù)f(x)=
2x
1+2x
-
1
2
,則y=[f(x)]+[f(-x)]的值域為{-1,0}.
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=
1
3
,tanβ=-
1
7
,且0<α<
π
2
,
π
2
<β<π,則2α-β的值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1的各頂點都在同一球面上,若四面體A-B1CD1的表面積為8
3
,則球的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{cn},如果存在各項均為正整數(shù)的等差數(shù)列{an}和各項均為正整數(shù)的等比數(shù)列{bn},使得cn=an+bn,則稱數(shù)列{cn}為“DQ數(shù)列”.已知數(shù)列{en}是“DQ數(shù)列”,其前5項分別是:3,6,11,20,37,則en=
 

查看答案和解析>>

同步練習冊答案