精英家教網 > 高中數學 > 題目詳情

【題目】已知圓與y軸交于O,A兩點,圓C2過O,A兩點,且直線C2O與圓C1相切;

(1)求圓C2的方程;

(2)若圓C2上一動點M,直線MO與圓C1的另一交點為N,在平面內是否存在定點P使得PM=PN始終成立,若存在求出定點坐標,若不存在,說明理由.

【答案】(1);(2)存在,且為

【解析】試題分析:(1)由(x﹣4)2+(y﹣2)2=20,令x=0,解得y=0或4.圓C2過0,A兩點,可設圓C2的圓心C1(a,2).直線C2O的方程為:y=x,即x﹣2y=0.利用直線C20與圓C1相切的性質即可得出;(2)存在,且為P(3,4).設直線OM的方程為:y=kx.代入圓C2的方程可得:(1+k2)x2+(2﹣4k)x=0.可得M的坐標.同理可得N的坐標.設P(x,y),線段MN的中點E,利用kPEk=﹣1即可得出.

詳解:

(1)由(x﹣4)2+(y﹣2)2=20,令x=0,解得y=0或4.

圓C2過O,A兩點,可設圓C2的圓心C1(a,2).

直線C2O的方程為:y=x,即x﹣2y=0.

直線C2O與圓C1相切,=,解得a=﹣1,

圓C2的方程為:(x+1)2+(y﹣2)2=,化為:x2+y2+2x﹣4y=0.

(2)存在,且為P(3,4).

設直線OM的方程為:y=kx.

代入圓C2的方程可得:(1+k2)x2+(2﹣4k)x=0.

xM=,yM=

代入圓C1的方程可得:(1+k2)x2﹣(8+4k)x=0.

xN=,yN=

設P(x,y),線段MN的中點E

×k=﹣1,

化為:k(4﹣y)+(3﹣x)=0,

令4﹣y=3﹣x=0,解得x=3,y=4.

P(3,4)與k無關系.

在平面內是存在定點P(3,4)使得PM=PN始終成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且
(1)求sinB的值;
(2)若D為AC的中點,且BD=1,求△ABD面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若直線 與曲線 有公共點,則 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖像是由函數的圖像經如下變換得到:先將圖像上所有點的縱坐標伸長到原來的2倍橫坐標不變,再將所得到的圖像向右平移個單位長度.

求函數的解析式,并求其圖像的對稱軸方程;

已知關于的方程內有兩個不同的解

1求實數m的取值范圍;

2證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知以點為圓心的圓過點線段的垂直平分線交圓于點、,,

(1)求直線的方程; (2)求圓的方程。

(3)設點在圓上,試探究使的面積為 8 的點共有幾個?證明你的結論

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大學藝術專業(yè)400名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成7組: ,并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數小于70的概率;
(Ⅱ)已知樣本中分數小于40的學生有5人,試估計總體中分數在區(qū)間[40,50)內的人數;
(Ⅲ)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等.試估計總體中男生和女生人數的比例.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DBAC,點M是棱BB1上一點.

(1)求證:B1D1平面A1BD;

(2)求證:MDAC;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學調查了某班全部 45 名同學參加書法社團和演講社團的情況,數據如下表:(單位:人)

參加書法社團

未參加書法社團

參加演講社團

8

5

未參加書法社團

2

30

(1)從該班隨機選 1 名同學,求該同學至少參加上述一個社團的概率;

(2)在既參加書法社團又參加演講社團的 8 名同學中,有 5 名男同學,3名女同學.現從這 5 名男同學和 3 名女同學中各隨機選 1 人,求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】 為兩個定點, 的一條切線,若過 兩點的拋物線以直線 為準線,則該拋物線的焦點的軌跡方程是

查看答案和解析>>

同步練習冊答案