【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).

1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

2)若上的有界函數(shù),且的上界為3,求實(shí)數(shù)的取值范圍.

【答案】(1)值域?yàn)?/span>,函數(shù)上不是有界函數(shù),詳見解析(2)

【解析】

1)利用函數(shù)的單調(diào)性得到函數(shù)的值域,從值域上觀察不存在正數(shù)M,即函數(shù)在x∈(0,+∞)上不是有界函數(shù).,

2)根據(jù)函數(shù)fx)在(﹣,0]上是以3為上界的函數(shù),得到|1+2x+4x|≤3,換元以后得到關(guān)于t的不等式,根據(jù)二次函數(shù)的性質(zhì)寫出對稱軸,求出a的范圍.

1)當(dāng)時(shí),,

因?yàn)?/span>上遞增,所以

的值域?yàn)?/span>,故不存在常數(shù),使成立,

所以函數(shù)上不是有界函數(shù).

2)由已知函數(shù)fx)在(﹣,0]上是以3為上界的函數(shù),即:|1+a2x+4x|≤3

設(shè)t2x,所以t∈(01),不等式化為|1+at+t2|≤3

當(dāng)0時(shí),12+a≤3得﹣2<a0

當(dāng)時(shí),即a2a≥0時(shí),得﹣5≤a20≤a≤1,

綜上有.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),),且兩個(gè)焦點(diǎn),的坐標(biāo)依次為(1,0)和(1,0).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè),是橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為,求當(dāng)為何值時(shí),直線與以原點(diǎn)為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鎮(zhèn)在政府精準(zhǔn)扶貧的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計(jì)劃共投入72萬元,全部用于甲、乙兩個(gè)合作社,每個(gè)合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進(jìn)行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益M、養(yǎng)雞的收益N與投入a(單位:萬元)滿足Na+20.設(shè)甲合作社的投入為x(單位:萬元),兩個(gè)合作社的總收益為fx)(單位:萬元).

1)當(dāng)甲合作社的投入為25萬元時(shí),求兩個(gè)合作社的總收益;

2)試問如何安排甲、乙兩個(gè)合作社的投入,才能使總收益最大,最大總收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖三棱柱中,側(cè)面為菱形,.

(Ⅰ)證明:

(Ⅱ)若,AB=BC,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代名詞“芻童”原來是草堆的意思,關(guān)于“芻童”體積計(jì)算的描述,《九章算術(shù)》注曰:“倍上袤,下袤從之,亦倍下袤,上袤從之,各以其廣乘之,并,以高乘之,皆六而一.”其計(jì)算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘,將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個(gè)數(shù)值相加,與高相乘,再取其六分之一.已知一個(gè)“芻童”的下底面是周長為18的矩形,上底面矩形的長為3,寬為2,“芻童”的高為3,則該“芻童”的體積的最大值為

A. B. C. 39 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)常數(shù)).

1)若,寫出的單調(diào)遞增區(qū)間(直接寫結(jié)果)

2)若,設(shè)在區(qū)間的最小值為,求的表達(dá)式;

3)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

參考結(jié)論:函數(shù)為常數(shù)),時(shí),上遞增;時(shí),上遞減,上遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的導(dǎo)函數(shù)零點(diǎn)的個(gè)數(shù);

(2)若函數(shù)的最小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建國家級文明城市,某城市號召出租車司機(jī)在高考期間至少參加一次“愛心送考”,該城市某出租車公司共200名司機(jī),他們參加“愛心送考”的次數(shù)統(tǒng)計(jì)如圖所示.

(1)求該出租車公司的司機(jī)參加“愛心送考”的人均次數(shù);

(2)從這200名司機(jī)中任選兩人,設(shè)這兩人參加送考次數(shù)之差的絕對值為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

1)求實(shí)數(shù)的值;

2)若的圖像在直線下方,求b的取值范圍;

3)設(shè)函數(shù),若上的最小值為0,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案