在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖15所示.
(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.
圖15
解:(1)證明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD.
又CD⊂平面BCD,∴AB⊥CD.
(2)過點(diǎn)B在平面BCD內(nèi)作BE⊥BD.
由(1)知AB⊥平面BCD,BE⊂平面BCD,BD⊂平面BCD,∴AB⊥BE,AB⊥BD.
以B為坐標(biāo)原點(diǎn),分別以,,的方向?yàn)?i>x軸,y軸,z軸的正方向建立空間直角坐標(biāo)系(如圖所示).
依題意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M.
則=(1,1,0),=,=(0,1,-1).
設(shè)平面MBC的法向量n=(x0,y0,z0),
則即
取z0=1,得平面MBC的一個(gè)法向量n=(1,-1,1).
設(shè)直線AD與平面MBC所成角為θ,
則sin θ===.
即直線AD與平面MBC所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
曲線C的方程為+=1,其中m,n是將一枚骰子先后投擲兩次所得點(diǎn)數(shù),事件A=“方程+=1表示焦點(diǎn)在x軸上的橢圓”,那么P(A)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
四面體ABCD及其三視圖如圖14所示,過棱AB的中點(diǎn)E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點(diǎn)F,G,H.
(1)證明:四邊形EFGH是矩形;
(2)求直線AB與平面EFGH夾角θ的正弦值.
圖14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖13,正方形AMDE的邊長為2,B,C分別為AM,MD的中點(diǎn).在五棱錐P ABCDE中,F為棱PE的中點(diǎn),平面ABF與棱PD,PC分別交于點(diǎn)G,H.
(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE,求直線BC與平面ABF所成角的大小,并求線段PH的長.
圖13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
三棱錐A BCD及其側(cè)視圖、俯視圖如圖14所示.設(shè)M,N分別為線段AD,AB的中點(diǎn),P為線段BC上的點(diǎn),且MN⊥NP.
(1)證明:P是線段BC的中點(diǎn);
(2)求二面角A NP M的余弦值.
圖14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
正四棱錐的頂點(diǎn)都在同一球面上.若該棱錐的高為4,底面邊長為2,則該球的表面積為( )
A. B.16π C.9π D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖13所示,在四棱柱ABCD A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是線段AB的中點(diǎn).
圖13
(1)求證:C1M∥平面A1ADD1;
(2)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下列4個(gè)表格中,可以作為離散型隨機(jī)變量分布列的一個(gè)是( )
A.
X | 0 | 1 | 2 |
P | 0.3 | 0.4 | 0.5 |
B.
X | 0 | 1 | 2 |
P | 0.3 | -0.1 | 0.8 |
C.
X | 1 | 2 | 3 | 4 |
P | 0.2 | 0.5 | 0.3 | 0 |
D.
X | 0 | 1 | 2 |
P |
|
|
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com