【題目】如圖,四邊形ABCD是邊長為1的正方形,平面ABCD,平面ABCD,且,G為線段EC上的動點(diǎn),則下列結(jié)論中正確的是______

該幾何體外接球的表面積為;

GEC中點(diǎn),則平面AEF

的最小值為3.

【答案】

【解析】

D為原點(diǎn),DA所在直線為x軸,DC所在直線為y軸,DE所在直線為z軸,建立空間直角坐標(biāo)系,分別求得D,AB,CF,E的坐標(biāo),由,的坐標(biāo)表示,可判斷;確定球心為矩形BDEF的對角線交點(diǎn),求得半徑,可判斷;求得G的坐標(biāo),求得平面AEF的法向量,計(jì)算可判斷;設(shè)出G的坐標(biāo),由兩點(diǎn)的距離公式,結(jié)合二次函數(shù)的最值求法,可判斷

D為原點(diǎn),DA所在直線為x軸,DC所在直線為y軸,DE所在直線為z軸,

建立空間直角坐標(biāo)系,

可得0,,0,1,,1,,1,0,

即有1,,1,,由,可得,故正確;

由球心在過正方形ABCD的中心的垂面上,即為矩形BDEF的對角線的交點(diǎn),

可得半徑為,即有該幾何體外接球的表面積為,故正確;

GEC中點(diǎn),可得1,0,0,,1,,

設(shè)平面AEF的法向量為y,,可得,且,可設(shè),可得一個法向量為,

,可得平面AEF,故正確;

設(shè)t,,

當(dāng)時,取得最小值,故錯誤.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與拋物線相交于兩點(diǎn),與軸交于點(diǎn),且,于點(diǎn).

1)當(dāng)時,求的值;

2)當(dāng)時,求的面積之積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一輛單向行駛的汽車,滿載為25人,全程共設(shè)14個車站,途中每個車站均可上下乘客,由不同的起點(diǎn)到達(dá)不同的終點(diǎn)的乘客應(yīng)購買不同的車票,在一次單程行駛中,車上最多賣出不同的車票的個數(shù)是(

A.63B.65C.67D.69

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年12月18日上午10時,在人民大會堂舉行了慶祝改革開放40周年大會.40年眾志成城,40年砥礪奮進(jìn),40年春風(fēng)化雨,中國人民用雙手書寫了國家和民族發(fā)展的壯麗史詩.會后,央視媒體平臺,收到了來自全國各地的紀(jì)念改革開放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開放40年圖片展”,其作者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:

(Ⅰ)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

(Ⅱ)由頻率分布直方圖可以認(rèn)為,作者年齡X服從正態(tài)分布,其中近似為樣本平

均數(shù),近似為樣本方差

(i)利用該正態(tài)分布,求;

(ii)央視媒體平臺從年齡在的作者中,按照分層抽樣的方法,抽出了7人參加“紀(jì)念改革開放40年圖片展”表彰大會,現(xiàn)要從中選出3人作為代表發(fā)言,設(shè)這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學(xué)期望.附:,若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車的投放,方便了市民短途出行,被譽(yù)為中國新四大發(fā)明之一.某市為研究單車用戶與年齡的相關(guān)程度,隨機(jī)調(diào)查了100位成人市民,統(tǒng)計(jì)數(shù)據(jù)如下:

不小于40

小于40

合計(jì)

單車用戶

12

y

m

非單車用戶

x

32

70

合計(jì)

n

50

100

1)求出列聯(lián)表中字母x、y、mn的值;

2)①從此樣本中,對單車用戶按年齡采取分層抽樣的方法抽出5人進(jìn)行深入調(diào)研,其中不小于40歲的人應(yīng)抽多少人?

②從獨(dú)立性檢驗(yàn)角度分析,能否有以上的把握認(rèn)為該市成人市民是否為單車用戶與年齡是否小于40歲有關(guān).

下面臨界值表供參考:

P

0.15

0.10

0.05

0.25

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).求最小的正整數(shù)n,使得對A的任意11個子集,只要它們中任何5個的并的元素個數(shù)都不少于n,則這11個子集中一定存在3個,它們的交非空.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

已知曲線的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)求直線被曲線所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,,以為邊在軸上方作一個平行四邊形,滿足.

(1)求動點(diǎn)的軌跡方程;

(2)將動點(diǎn)的軌跡方程所表示的曲線向左平移個單位得曲線,若是曲線上的一點(diǎn),當(dāng)時,記為點(diǎn)到直線距離的最大值,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案