【題目】在直角坐標(biāo)系中,,以為邊在軸上方作一個(gè)平行四邊形,滿足.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)將動(dòng)點(diǎn)的軌跡方程所表示的曲線向左平移個(gè)單位得曲線,若是曲線上的一點(diǎn),當(dāng)時(shí),記為點(diǎn)到直線距離的最大值,求的最小值.
【答案】(1)(2)
【解析】
(1)設(shè), 過作交的延長線于.由列x,y關(guān)系式化簡整理即可;(2)由得P在劣弧上,作劣弧的一條切線,使得,切點(diǎn)為,利用幾何關(guān)系求解即可.
(1)如圖,過作交的延長線于.
則,,,所以.
設(shè),則,
化簡得,.
(2)將改寫為,
由已知得,曲線的方程為,
當(dāng)時(shí),得到劣弧,
其中,
作劣弧的一條切線,使得,切點(diǎn)為,連接交于,
因?yàn)?/span>,
所以,
當(dāng)變化時(shí),直線為平面內(nèi)的任意一條直線,
當(dāng)且僅當(dāng)直線位于兩平行直線、之間且與這兩條直線距離相等時(shí),
取得最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,平面ABCD,平面ABCD,且,G為線段EC上的動(dòng)點(diǎn),則下列結(jié)論中正確的是______
;該幾何體外接球的表面積為;
若G為EC中點(diǎn),則平面AEF;
的最小值為3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓內(nèi)接等腰梯形中,已知,對角線、交于點(diǎn),且圖中各條線段長均為正整數(shù),,圓的半徑.
(1)求證:圖中存在一個(gè)三角形,其三邊長均為質(zhì)數(shù)且組成等差數(shù)列;
(2)若給圖中的線(包括圓、梯形、梯形的對角線)作點(diǎn)染色,使、、染上紅色,其他點(diǎn)染上紅藍(lán)色之一,求證:圖中存在三個(gè)同色點(diǎn),兩兩距離相等且長度為質(zhì)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了增加某種產(chǎn)品的生產(chǎn)能力,決定改造原有生產(chǎn)線,需一次性投資300萬元,第一年的年生產(chǎn)能力為300噸,隨后以每年40噸的速度逐年遞減,根據(jù)市場調(diào)查與預(yù)測,該產(chǎn)品的年銷售量的頻率分布直方圖如圖所示,該設(shè)備的使用年限為3年,該產(chǎn)品的銷售利潤為1萬元噸.
1根據(jù)年銷售量的頻率分布直方圖,估算年銷量的平均數(shù)同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表;
2將年銷售量落入各組的頻率視為概率,各組的年銷售量用該組區(qū)間的中點(diǎn)值作年銷量的估計(jì)值,并假設(shè)每年的銷售量相互獨(dú)立.
根據(jù)頻率分布直方圖估計(jì)年銷售利潤不低于180萬的概率和不低于220萬的概率;
試預(yù)測該企業(yè)3年的總凈利潤年的總凈利潤年銷售利潤一投資費(fèi)用
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃平縣且蘭高中全體師生努力下,有效進(jìn)行了“一對一輔導(dǎo)戰(zhàn)略”成績提高了一倍,下列是“優(yōu)秀學(xué)生”,“中等學(xué)生”,“差生”進(jìn)行“一對一”前后所占比例
戰(zhàn)略前 | 戰(zhàn)略后 | |||||
優(yōu)秀學(xué)生 | 中等學(xué)生 | 差生 | 優(yōu)秀學(xué)生 | 中等學(xué)生 | 差生 | |
20% | 50% | 30% | 25% | 45% | 30% |
則下列結(jié)論正確的是( )
A.實(shí)行“一對一”輔導(dǎo)戰(zhàn)略,差生成績并沒有提高.
B.實(shí)行“一對一”輔導(dǎo)戰(zhàn)略,中等生成績反而下降了.
C.實(shí)行“一對一”輔導(dǎo)戰(zhàn)略,優(yōu)秀學(xué)生成績提高了.
D.實(shí)行“一對一”輔導(dǎo)戰(zhàn)略,優(yōu)秀學(xué)生與中等生的成績沒有發(fā)生改變.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眾所周知,大型網(wǎng)絡(luò)游戲(下面簡稱網(wǎng)游)的運(yùn)行必須依托于網(wǎng)絡(luò)的基礎(chǔ)上,否則會(huì)出現(xiàn)頻繁掉線的情況,進(jìn)而影響游戲的銷售和推廣.某網(wǎng)游經(jīng)銷商在甲地區(qū)個(gè)位置對兩種類型的網(wǎng)絡(luò)(包括“電信”和“網(wǎng)通”)在相同條件下進(jìn)行游戲掉線測試,得到數(shù)據(jù)如下:
(Ⅰ)如果在測試中掉線次數(shù)超過次,則網(wǎng)絡(luò)狀況為“糟糕”,否則為“良好”,那么在犯錯(cuò)誤的概率不超過的前提下,能否說明網(wǎng)絡(luò)狀況與網(wǎng)絡(luò)的類型有關(guān)?
(Ⅱ)若該游戲經(jīng)銷商要在上述接受測試的電信的個(gè)地區(qū)中任選個(gè)作為游戲推廣,求、兩地區(qū)至少選到一個(gè)的概率.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對該校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,將收集的數(shù)據(jù)分成,,,,,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時(shí)間不低于40分鐘的學(xué)生評價(jià)為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的2×2列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | 60 | ||
女 | 110 | ||
合計(jì) |
(2)現(xiàn)按照“課外體育達(dá)標(biāo)”與“課外體育不達(dá)標(biāo)”進(jìn)行分層抽樣,抽取8人,再從這8名學(xué)生中隨機(jī)抽取3人參加體育知識問卷調(diào)查,記“課外體育不達(dá)標(biāo)”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.參考公式:
P(K2≥k0) | 0.15 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為2的正方形沿對角線折疊,使得平面平面,又平面.
(1)若,求直線與直線所成的角;
(2)若二面角的大小為,求的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com