【題目】已知函數(shù),

(1)求單調(diào)區(qū)間;

(2)設(shè),證明:上有最小值;設(shè)上的最小值為,求函數(shù)的值域.

【答案】(1)單調(diào)遞增,單調(diào)遞減,在單調(diào)遞增

(2).

【解析】分析:(1)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),最后根據(jù)導(dǎo)函數(shù)符號確定單調(diào)區(qū)間,(2)先求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)單調(diào)性以及零點(diǎn)存在定理確定導(dǎo)函數(shù)有且僅有一個(gè)零點(diǎn),再根據(jù)導(dǎo)函數(shù)符號確定單調(diào)性,由單調(diào)性確定最小值.根據(jù)導(dǎo)函數(shù)零點(diǎn)條件得,根據(jù)(1)的單調(diào)性確定值域.

詳解:(1)

,或;

所以單調(diào)遞增,單調(diào)遞減,在單調(diào)遞增

(2).設(shè),則當(dāng)時(shí),上是增函數(shù).

因?yàn)?/span>,,故上有唯一零點(diǎn)

當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.故當(dāng)時(shí),上的最小值

因?yàn)?/span>,,所以

當(dāng)時(shí),的遞減函數(shù),所以等價(jià)于

由(1)知遞減,所以

于是函數(shù)的值域?yàn)?/span>

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的一個(gè)極值點(diǎn).

(1)求的值;

(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù)項(xiàng)為的函數(shù)的導(dǎo)函數(shù)為,其中為常數(shù).

(1)當(dāng)時(shí),求的最大值;

(2)若在區(qū)間為自然對數(shù)的底數(shù))上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列命題:(1)雙曲線與橢圓有相同的焦點(diǎn);(2)“”是“”的必要不充分條件;(3)若向量與向量共線,則向量所在直線平行;(4)若三點(diǎn)不共線,是平面外一點(diǎn),,則點(diǎn)一定在平面上;其中是真命題的是______(填上正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為t為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(Ⅰ)當(dāng)時(shí),直接寫出的普通方程和極坐標(biāo)方程,直接寫出的普通方程;

(Ⅱ)已知點(diǎn) ,且曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐中,,,點(diǎn)上,且.

1)證明:平面;

2)求以為棱,為面的二面角的大小

3)在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線方程為x2=2py(p>0),M為直線y=-2p上任一點(diǎn),過M引拋物線的切線,切點(diǎn)分別為AB.求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近8年的宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中,

附:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:

1)根據(jù)散點(diǎn)圖判斷,,哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)已知這種產(chǎn)品的年利潤的關(guān)系為,根據(jù)(2)的結(jié)果回答:當(dāng)年宣傳費(fèi)時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)被稱為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個(gè)命題:①;②函數(shù)是偶函數(shù);③任取一個(gè)不為零的有理數(shù),對任意的恒成立;④存在三個(gè)點(diǎn),,使得為等邊三角形.其中真命題的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案