【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(t為參數(shù),),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ)當(dāng)時,直接寫出的普通方程和極坐標(biāo)方程,直接寫出的普通方程;
(Ⅱ)已知點 ,且曲線和交于兩點,求的值.
【答案】(Ⅰ), ,.(Ⅱ)
【解析】
試題分析:
(Ⅰ)由直線參數(shù)方程的幾何意義,知直線是過且傾斜角為的直線即軸,其普通方程與有坐標(biāo)方程易得,由公式可化的極坐標(biāo)方程為直角坐標(biāo)方程;
(Ⅱ)由P點坐標(biāo)知題中直線的參數(shù)方程中參數(shù)具有幾何意義,表示相應(yīng)的距離,因此只要把參數(shù)方程代入的直角坐標(biāo)方程,然后應(yīng)用韋達(dá)定理即得.
試題解析:
(Ⅰ)的普通方程是, 的極坐標(biāo)方程 , 的普通方程.
(Ⅱ)方法一:
是以點為圓心,半徑為1的圓;,所以在圓外,過做圓的切線,切線長由切割線定理知
方法二:將代入中,化簡得
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),有下列結(jié)論,其中正確的是( )
A.其圖象關(guān)于y軸對稱;
B.的最小值是;
C.當(dāng)時,是增函數(shù);當(dāng)時,是減函數(shù);
D.的增區(qū)間是,;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高三一班元旦晚會上,有6個演唱節(jié)目,4個舞蹈節(jié)目.
(1)當(dāng)4個舞蹈節(jié)目接在一起時,有多少種不同的節(jié)目安排順序?
(2)當(dāng)要求每2個舞蹈節(jié)目之間至少安排1個演唱節(jié)目時,有多少種不同的節(jié)目安排順序?
(3)若已定好節(jié)目單,后來情況有變,需加上詩歌朗誦和快板2個節(jié)目,但不能改變原來節(jié)目的相對順序,有多少種不同的節(jié)目演出順序?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)、兩種產(chǎn)品,生產(chǎn)每產(chǎn)品所需的勞動力和煤、電消耗如下表:
產(chǎn)品品種 | 勞動力(個) | 煤 | 電 |
已知生產(chǎn)產(chǎn)品的利潤是萬元,生產(chǎn)產(chǎn)品的利潤是萬元.現(xiàn)因條件限制,企業(yè)僅有勞動力個,煤,并且供電局只能供電,則企業(yè)生產(chǎn)、兩種產(chǎn)品各多少噸,才能獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求單調(diào)區(qū)間;
(2)設(shè),證明:在上有最小值;設(shè)在上的最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在充分競爭的市場環(huán)境中,產(chǎn)品的定價至關(guān)重要,它將影響產(chǎn)品的銷量,進(jìn)而影響生產(chǎn)成本、品牌形象等某公司根據(jù)多年的市場經(jīng)驗,總結(jié)得到了其生產(chǎn)的產(chǎn)品A在一個銷售季度的銷量單位:萬件與售價單位:元之間滿足函數(shù)關(guān)系,A的單件成本單位:元與銷量y之間滿足函數(shù)關(guān)系.
當(dāng)產(chǎn)品A的售價在什么范圍內(nèi)時,能使得其銷量不低于5萬件?
當(dāng)產(chǎn)品A的售價為多少時,總利潤最大?注:總利潤銷量售價單件成本
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)和函數(shù),
(1)若為偶函數(shù),試判斷的奇偶性;
(2)若方程有兩個不等的實根,則
①試判斷函數(shù)在區(qū)間上是否具有單調(diào)性,并說明理由;
②若方程的兩實根為求使成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),已知,
(1)若函數(shù),求的值;
(2)當(dāng)時,求證:函數(shù)在上是單調(diào)遞增函數(shù);
(3)若對于一切,不等式恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com