【題目】設函數(shù), ,其中R, …為自然對數(shù)的底數(shù).
(Ⅰ)當時, 恒成立,求的取值范圍;
(Ⅱ)求證: (參考數(shù)據(jù): ).
科目:高中數(shù)學 來源: 題型:
【題目】在邊長為2的等邊三角形中,點分別是邊上的點,滿足 且,(),將沿直線折到的位置.在翻折過程中,下列結論不成立的是( )
A.在邊上存在點,使得在翻折過程中,滿足平面
B.存在,使得在翻折過程中的某個位置,滿足平面平面
C.若,當二面角為直二面角時,
D.在翻折過程中,四棱錐體積的最大值記為,的最大值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有人收集了七月份的日平均氣溫(攝氏度)與某次冷飲店日銷售額(百元)的有關數(shù)據(jù),為分析其關系,該店做了五次統(tǒng)計,所得數(shù)據(jù)如下:
日平均氣溫(攝氏度) | 31 | 32 | 33 | 34 | 35 |
日銷售額(百元) | 5 | 6 | 7 | 8 | 10 |
由資料可知,關于的線性回歸方程是,給出下列說法:
①;
②日銷售額(百元)與日平均氣溫(攝氏度)成正相關;
③當日平均氣溫為攝氏度時,日銷售額一定為百元.
其中正確說法的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,且橢圓過點
(1)求橢圓的標準方程;
(2)設直線與交于、兩點,點在橢圓上,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】教材曾有介紹:圓上的點處的切線方程為。我們將其結論推廣:橢圓上的點處的切線方程為,在解本題時可以直接應用。已知,直線與橢圓有且只有一個公共點.
(1)求的值;
(2)設為坐標原點,過橢圓上的兩點、分別作該橢圓的兩條切線、,且與交于點。當變化時,求面積的最大值;
(3)在(2)的條件下,經(jīng)過點作直線與該橢圓交于、兩點,在線段上存在點,使成立,試問:點是否在直線上,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為配合“2019雙十二”促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準備某種商品各50個.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給四個派送點的商品數(shù)調(diào)整為40,45,54,61,但調(diào)整只能在相鄰派送點進行,每次調(diào)動可以調(diào)整1件商品.為完成調(diào)整,則( )
A.最少需要16次調(diào)動,有2種可行方案
B.最少需要15次調(diào)動,有1種可行方案
C.最少需要16次調(diào)動,有1種可行方案
D.最少需要15次調(diào)動,有2種可行方案
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在改革開放40年成就展上某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(1)根據(jù)表中數(shù)據(jù),建立關于的線性回歸方程.
(2)根據(jù)線性回歸方程預測2020年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計分別為,.(參考數(shù)據(jù):,計算結果保留到小數(shù)點后兩位)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com