【題目】為配合“2019雙十二促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準備某種商品各50.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給四個派送點的商品數(shù)調(diào)整為40,45,54,61,但調(diào)整只能在相鄰派送點進行,每次調(diào)動可以調(diào)整1件商品.為完成調(diào)整,則(

A.最少需要16次調(diào)動,有2種可行方案

B.最少需要15次調(diào)動,有1種可行方案

C.最少需要16次調(diào)動,有1種可行方案

D.最少需要15次調(diào)動,有2種可行方案

【答案】A

【解析】

根據(jù)題意得出有兩種可行的方案,即可得出正確選項.

根據(jù)題意A,B兩處共需向C,D兩處調(diào)15個商品,這15個商品應給D11個商品,C4個商品,按照調(diào)動次數(shù)最少的原則,有以下兩種方案:

方案一:A調(diào)動11個給D,B調(diào)動1個給AB調(diào)動4個給C,共調(diào)動16次;

方案二:A調(diào)動10個給D,B調(diào)動5個給C,C調(diào)動1個給D,共調(diào)動16次;

故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),已知有且僅有3個零點,下列結(jié)論正確的是(

A.上存在,,滿足

B.有且僅有1個最小值點

C.單調(diào)遞增

D.的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線)上的兩個動點,焦點為F.線段的中點為,且點到拋物線的焦點F的距離之和為8

1)求拋物線的標準方程;

2)若線段的垂直平分線與x軸交于點C,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種籠具由內(nèi),外兩層組成,無下底面,內(nèi)層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為,高為,圓錐的母線長為.

1)求這種籠具的體積(結(jié)果精確到0.1);

2)現(xiàn)要使用一種紗網(wǎng)材料制作50籠具,該材料的造價為每平方米8元,共需多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,其中R, …為自然對數(shù)的底數(shù)

)當時, 恒成立,求的取值范圍;

)求證: (參考數(shù)據(jù): )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等,勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,的面積.將,稱為基尼系數(shù).對于下列說法:

越小,則國民分配越公平;

②設勞倫茨曲線對應的函數(shù)為,則對,均有;

③若某國家某年的勞倫茨曲線近似為,則

其中正確的是:(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,圓C的普通方程為在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為寫出圓C的參數(shù)方程和直線l的直角坐標方程;設直線lx軸和y軸的交點分別為A、B,P為圓C上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由3個人依次出場解密,每人限定時間是1分鐘內(nèi),否則派下一個人.3個人中只要有一人解密正確,則認為該團隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲100次的測試記錄,繪制了如圖所示的頻率分布直方圖.

1)若甲解密成功所需時間的中位數(shù)為47,求的值,并求出甲在1分鐘內(nèi)解密成功的頻率;

2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個出場選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.

①求該團隊挑戰(zhàn)成功的概率;

②該團隊以從小到大的順序按排甲、乙、丙三個人上場解密,求團隊挑戰(zhàn)成功所需派出的人數(shù)的可能值及其概率.

查看答案和解析>>

同步練習冊答案