【題目】為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時(shí),表示收入完全平等,勞倫茨曲線為折線時(shí),表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積.將,稱為基尼系數(shù).對(duì)于下列說法:
①越小,則國(guó)民分配越公平;
②設(shè)勞倫茨曲線對(duì)應(yīng)的函數(shù)為,則對(duì),均有;
③若某國(guó)家某年的勞倫茨曲線近似為,則;
其中正確的是:( )
A.①②B.①③C.②③D.①②③
【答案】B
【解析】
結(jié)合基尼系數(shù)曲線的特點(diǎn),可判斷出①正確;由勞倫茨曲線為一條凹向橫軸的曲線,可知,均有,可知②錯(cuò)誤;再結(jié)合對(duì)應(yīng)的圖形特征,可求出對(duì)應(yīng)的,進(jìn)而可求出,即可判斷③是否正確.
對(duì)于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國(guó)民分配越公平,所以①正確;
對(duì)于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,可知,均有,可得,所以②錯(cuò)誤;
對(duì)于③,易知表示圓心為,半徑為1的圓弧,則,,故,所以③正確.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,曲線在點(diǎn)處的切線與直線平行,求的值;
(2)若,且函數(shù)的值域?yàn)?/span>,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線C1:的準(zhǔn)線1與x軸交于橢圓C2:的右焦點(diǎn)F2,F1為C2的左焦點(diǎn).橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點(diǎn)P,連接PF1并延長(zhǎng)其交C1于點(diǎn)Q,M為C1上一動(dòng)點(diǎn),且在P,Q之間移動(dòng).
(1)當(dāng)取最小值時(shí),求C1和C2的方程;
(2)若△PF1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù),當(dāng)△MPQ面積取最大值時(shí),求面積最大值以及此時(shí)直線MP的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長(zhǎng)為2的菱形,且,平面,,,點(diǎn)是線段上任意一點(diǎn).
(1)證明:平面平面;
(2)若的最大值是,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為配合“2019雙十二”促銷活動(dòng),某公司的四個(gè)商品派送點(diǎn)如圖環(huán)形分布,并且公司給四個(gè)派送點(diǎn)準(zhǔn)備某種商品各50個(gè).根據(jù)平臺(tái)數(shù)據(jù)中心統(tǒng)計(jì)發(fā)現(xiàn),需要將發(fā)送給四個(gè)派送點(diǎn)的商品數(shù)調(diào)整為40,45,54,61,但調(diào)整只能在相鄰派送點(diǎn)進(jìn)行,每次調(diào)動(dòng)可以調(diào)整1件商品.為完成調(diào)整,則( )
A.最少需要16次調(diào)動(dòng),有2種可行方案
B.最少需要15次調(diào)動(dòng),有1種可行方案
C.最少需要16次調(diào)動(dòng),有1種可行方案
D.最少需要15次調(diào)動(dòng),有2種可行方案
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列判斷正確的是( )
A. 有最大值和最小值
B. 的圖象的對(duì)稱中心為()
C. 在上存在單調(diào)遞減區(qū)間
D. 的圖象可由的圖象向左平移個(gè)單位而得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校進(jìn)行自主招生選拔,分筆試和面試兩個(gè)階段進(jìn)行,規(guī)定分?jǐn)?shù)不小于筆試成績(jī)中位數(shù)的具有面試資格.現(xiàn)有1000余名學(xué)生參加了筆試考試,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(1)求獲得面試資格應(yīng)劃定的最低分?jǐn)?shù)線;
(2)從筆試得分在區(qū)間的學(xué)生中,利用分層抽樣的方法隨機(jī)抽取7人,那么從得分在區(qū)間與各抽取多少人?
(3)從(2)抽取的7人中,選出4人參加學(xué)校座談交流,學(xué)校打算給這4人一定的物質(zhì)獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予300元物質(zhì)獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予500元物質(zhì)獎(jiǎng)勵(lì),用表示學(xué)校發(fā)的獎(jiǎng)金數(shù)額,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,,求函數(shù)在處的切線方程;
(2)若,且是函數(shù)的一個(gè)極值點(diǎn),確定的單調(diào)區(qū)間;
(3)若,且對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com