如圖,橢圓過點P(1,
),其左、右焦點分別為F1,F2,離心率e=
, M, N是直線x=4上的兩個動點,且
·
=0.
(1)求橢圓的方程;
(2)求MN的最小值;
(3)以MN為直徑的圓C是否過定點?
(1)=1;(2)
;(3)(4-
,0)和(4+
,0) .
解析試題分析:(1)因為:,且過點P(1,
),列出關(guān)于a,b的方程,解得a,b.最后寫出橢圓方程即可;(2)設(shè)點M(4,m),N(4,n)寫出向量的坐標(biāo),利用向量的數(shù)量積得到mn=-15,又|MN|=|m-n|=|m|+|n|=|m|+
≥
,結(jié)合基本不等式即可求得MN的最小值;
(3)利用圓心C的坐標(biāo)和半徑得出圓C的方程,再令y=0,得x2-8x+1=0從而得出圓C過定點.
試題解析:(1)由已知可得
∴橢圓的方程為=1 4分
(2)設(shè)M(4,m),N(4,n),∵F1(-1,0),F(xiàn)2(1,0)=(5,m),
=(3,n),由
=0
mn=-15<0 6分
∴|MN|=|m-n|=|m|+|n|=|m|+≥2
∴|MN|的最小值為2
10分
(3)以MN為直徑的圓C的方程為:(x-4)2+(y-)=(
)2 12分
令y=0得(x-4)2=-
=-mn=15
x=4±
所以圓C過定點(4-,0)和(4+
,0) 14分
考點:1.圓與圓錐曲線的綜合;2.橢圓的簡單性質(zhì).
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否同時存在滿足下列條件的雙曲線,若存在,求出其方程,若不存在,說明理由.
(1)焦點在軸上的雙曲線漸近線方程為
;
(2)點到雙曲線上動點
的距離最小值為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:+
=1(a>b>0),左、右兩個焦點分別為F1,F2,上頂點A(0,b),△AF1F2為正三角形且周長為6.
(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;
(2)O為坐標(biāo)原點,P是直線F1A上的一個動點,求|PF2|+|PO|的最小值,并求出此時點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以橢圓的一個頂點
為直角頂點作此橢圓的內(nèi)接等腰直角三角形
,試問:(1)這樣的等腰直角三角形是否存在?若存在,寫出一個等腰直角三角形兩腰所在的直線方程。若不存在,說明理由。(2)這樣的等腰直角三角形若存在,最多有幾個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點為
,點
,線段
的中點在拋物線上.設(shè)動直線
與拋物線相切于點
,且與拋物線的準(zhǔn)線相交于點
,以
為直徑的圓記為圓
.
(1)求的值;
(2)試判斷圓與
軸的位置關(guān)系;
(3)在坐標(biāo)平面上是否存在定點,使得圓
恒過點
?若存在,求出
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(
>
>0)的離心率
,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于不同的兩點
,已知點
的坐標(biāo)為(
,0),點
(0,
)在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
科目:解答題
來源: 題型:如圖所示,直線l:y=x+b與拋物線C:x2=4y相切于點A.
(1)求實數(shù)b的值;
(2)求以點A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C:+
=1的焦點在x軸上,左右頂點分別為A1,A,上頂點為B,拋物線C1,C2分別以A,B為焦點,其頂點均為坐標(biāo)原點O,C1與C2相交于直線y=
x上一點P.
(1)求橢圓C及拋物線C1,C2的方程.
(2)若動直線l與直線OP垂直,且與橢圓C交于不同兩點M,N,已知點Q(-,0),求
·
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為原點
,離心率
,其一個焦點在拋物線
的準(zhǔn)線上,若拋物線
與直線
相切.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)點在橢圓
上運動時,設(shè)動點
的運動軌跡為
.若點
滿足:
,其中
是
上的點,直線
與
的斜率之積為
,試說明:是否存在兩個定點
,使得
為定值?若存在,求
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com