【題目】某工廠每日生產(chǎn)某種產(chǎn)品噸,當(dāng)日生產(chǎn)的產(chǎn)品當(dāng)日銷(xiāo)售完畢,當(dāng)時(shí),每日的銷(xiāo)售額(單位:萬(wàn)元)與當(dāng)日的產(chǎn)量滿(mǎn)足,當(dāng)日產(chǎn)量超過(guò)20噸時(shí),銷(xiāo)售額只能保持日產(chǎn)量20噸時(shí)的狀況.已知日產(chǎn)量為2噸時(shí)銷(xiāo)售額為4.5萬(wàn)元,日產(chǎn)量為4噸時(shí)銷(xiāo)售額為8萬(wàn)元.
(1)把每日銷(xiāo)售額表示為日產(chǎn)量的函數(shù);
(2)若每日的生產(chǎn)成本(單位:萬(wàn)元),當(dāng)日產(chǎn)量為多少?lài)崟r(shí),每日的利潤(rùn)可以達(dá)到最大?并求出最大值.
(注:計(jì)算時(shí)取,)
【答案】(1) (2) 當(dāng)日產(chǎn)量為10噸時(shí),每日的利潤(rùn)可達(dá)到最大,最大利潤(rùn)為6.5萬(wàn)元.
【解析】
(1)將和代入,解得,即可得到答案;
(2)先寫(xiě)出分段函數(shù)的解析式,再分段求最大值即可得到答案.
解:(1)因?yàn)楫?dāng)時(shí),,所以.①
當(dāng)時(shí),,所以.②
由①②解得,
所以當(dāng)時(shí),.
當(dāng)時(shí),.
所以
(2)設(shè)當(dāng)日產(chǎn)量為噸時(shí),每日的利潤(rùn)為,
則
①若,則.
當(dāng)時(shí),;當(dāng)時(shí),.
故是函數(shù)在內(nèi)唯一的極大值點(diǎn),也是最大值點(diǎn),
所以.
②若,則,顯然單調(diào)遞減,故.
結(jié)合①②可知,當(dāng)日產(chǎn)量為10噸時(shí),每日的利潤(rùn)可達(dá)到最大,最大利潤(rùn)為6.5萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,則這個(gè)定值為;推廣到空間,棱長(zhǎng)為的正四面體內(nèi)任一點(diǎn)到各面距離之和為___________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P—ABC中,平面PAC⊥平面ABC,AB=BC,PA⊥PC.點(diǎn)E,F,O分別為線(xiàn)段PA,PB,AC的中點(diǎn),點(diǎn)G是線(xiàn)段CO的中點(diǎn).
(1)求證:FG∥平面EBO;
(2)求證:PA⊥BE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓C:(>>0)的右焦點(diǎn)為F(1,0),且過(guò)點(diǎn)(1,),過(guò)點(diǎn)F且不與軸重合的直線(xiàn)與橢圓C交于A,B兩點(diǎn),點(diǎn)P在橢圓上,且滿(mǎn)足.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若,求直線(xiàn)AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,,,,為正三角形,且.
(1)證明:直線(xiàn)平面;
(2)若四棱錐的體積為,是線(xiàn)段的中點(diǎn),求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng),討論的零點(diǎn)個(gè)數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為a,∠D=60°,點(diǎn)H為DC邊中點(diǎn),現(xiàn)以線(xiàn)段AH為折痕將△DAH折起使得點(diǎn)D到達(dá)點(diǎn)P的位置且平面PHA⊥平面ABCH,點(diǎn)E,F分別為AB,AP的中點(diǎn).
(1)求證:平面PBC∥平面EFH;
(2)若三棱錐P﹣EFH的體積等于,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形中,,,點(diǎn)在上,且,將沿折起,使得平面平面(如圖2).為中點(diǎn)
(1)求證:;
(2)求四棱錐的體積;
(3)在線(xiàn)段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com