【題目】如圖為正方體ABCD-A1B1C1D1,動(dòng)點(diǎn)MB1點(diǎn)出發(fā),在正方體表面沿逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周后,再回到B1的運(yùn)動(dòng)過(guò)程中,點(diǎn)M與平面A1DC1的距離保持不變,運(yùn)動(dòng)的路程xl=MA1+MC1+MD之間滿足函數(shù)關(guān)系l=fx),則此函數(shù)圖象大致是( 。

A. B.

C. D.

【答案】C

【解析】

先找到點(diǎn)M的路線,把其路線分成六小段,分析從P過(guò)程函數(shù)的單調(diào)性得解.

由于點(diǎn)M與平面A1DC1的距離保持不變,所以點(diǎn)M在平面上,

運(yùn)動(dòng)的路線為,

設(shè)點(diǎn)PB1C的中點(diǎn),

l=MA1+MC1+MD中,MA1+MD是定值, PC1是定值,

MC1=

當(dāng)M從C到,運(yùn)動(dòng)到段時(shí),運(yùn)動(dòng)的路程x慢慢變大時(shí), PM變大,MC1變大,

所以函數(shù)是增函數(shù),所以C正確;

(類(lèi)似討論由A,由AC的過(guò)程,l=MA1+MC1+MD之間滿足函數(shù)關(guān)系l=fx).

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,函數(shù)F(x)=f(x)﹣b有四個(gè)不同的零點(diǎn)x1,x2,x3,x4,且滿足:x1<x2<x3<x4,則的取值范圍是( )

A.[,+∞)B.(3,]C.[3,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫(xiě)出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程

(2)已知與直線平行的直線過(guò)點(diǎn),且與曲線交于兩點(diǎn),試求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線),過(guò)點(diǎn))的直線交于、兩點(diǎn).

1)若,求證:是定值(是坐標(biāo)原點(diǎn));

2)若是確定的常數(shù)),求證:直線過(guò)定點(diǎn),并求出此定點(diǎn)坐標(biāo);

3)若的斜率為1,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字,記為,再由乙猜甲剛才想的數(shù)字把乙猜的數(shù)字記為,且,若,則稱(chēng)甲乙“心有靈犀”,現(xiàn)任意找兩個(gè)人玩這個(gè)游戲,得出他們“心有靈犀”的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩動(dòng)圓),把它們的公共點(diǎn)的軌跡記為曲線,若曲線軸的正半軸的交點(diǎn)為,且曲線上的相異兩點(diǎn)滿足:.

1)求曲線的軌跡方程;

2)證明直線恒經(jīng)過(guò)一定點(diǎn),并求此定點(diǎn)的坐標(biāo);

3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若有窮數(shù)列)滿足:①;②.則稱(chēng)該數(shù)列為“階非凡數(shù)列”

1)分別寫(xiě)出一個(gè)單調(diào)遞增的“階非凡數(shù)列”和一個(gè)單調(diào)遞減的“階非凡數(shù)列”;

2)設(shè),若“階非凡數(shù)列”是等差數(shù)列,求其通項(xiàng)公式;

3)記“階非凡數(shù)列”的前項(xiàng)的和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元,為了增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出)名員工從事第三產(chǎn)業(yè),調(diào)整后這名員工他們平均每人創(chuàng)造利潤(rùn)為萬(wàn)元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高.

1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整多少名員工從事第三產(chǎn)業(yè)?

2)設(shè),若調(diào)整出的員工創(chuàng)造出的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的單調(diào)區(qū)間;

2)討論函數(shù)的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案