【題目】已知函數(shù).

(Ⅰ)若,求曲線在點(diǎn)處的切線方程;

(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若,求證: .

【答案】;( ;(證明見(jiàn)解析.

【解析】試題分析:求出求出的值可得切點(diǎn)坐標(biāo),求出的值,可得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;(在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間; ,等價(jià)于,等價(jià)于,設(shè),只須證成立,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用單調(diào)性求出的最小值,證明最小值大于零即可得結(jié)論.

試題解析:(Ⅰ)若,,,

所以在點(diǎn)處的切線方程為.

,.

, (依題意)

,;,.

所以, 在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以,

因?yàn)?/span>,所以.

所以,.

所以函數(shù)的單調(diào)遞增區(qū)間為.

Ⅲ)由,等價(jià)于,

等價(jià)于.

設(shè),只須證成立.

因?yàn)?/span>

,有異號(hào)兩根.

令其正根為,.

,

的最小值為

所以

因此所以.所以.

【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、證明不等式,屬于難題.求曲線切線方程的一般步驟是:(1)求出處的導(dǎo)數(shù),即在點(diǎn) 出的切線斜率(當(dāng)曲線處的切線與軸平行時(shí),在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點(diǎn)斜式求得切線方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)動(dòng)點(diǎn)到兩定點(diǎn)的距離之和為4.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)已知直線的傾斜角均為,直線過(guò)坐標(biāo)原點(diǎn)且與曲線相交于, 兩點(diǎn),直線過(guò)點(diǎn)且與曲線是交于, 兩點(diǎn),求證:對(duì)任意, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,,是棱的中點(diǎn),,,

求證:平面;

若二面角大于,求四棱錐體積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定點(diǎn),若是直線上位于第一象限內(nèi)的一點(diǎn),直線軸的正半軸相交于點(diǎn).試探究:的面積是否具有最小值?若有,求出點(diǎn)的坐標(biāo);若沒(méi)有,則說(shuō)明理由.若點(diǎn)為直線上的任意一點(diǎn),情況又會(huì)怎樣呢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù))以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,并取與直角坐標(biāo)系相同的單位長(zhǎng)度,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求曲線 的直角坐標(biāo)方程;

(2)若分別是曲線上的任意點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學(xué)習(xí)小組對(duì)成都市一中心路段(限行速度為千米/小時(shí))的擁堵情況進(jìn)行調(diào)查統(tǒng)計(jì),通過(guò)數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(/千米)與車流密度(千米/小時(shí))之間存在如下關(guān)系:如果車流密度不超過(guò)該路段暢通無(wú)阻(車流速度為限行速度);當(dāng)車流密度在時(shí),車流速度是車流密度的一次函數(shù);車流密度一旦達(dá)到該路段交通完全癱瘓(車流速度為零).

1)求關(guān)于的函數(shù)

2)已知車流量(單位時(shí)間內(nèi)通過(guò)的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等比數(shù)列的公比為,其前項(xiàng)和為,前項(xiàng)之積為,并且滿足條件:,,下列結(jié)論中正確的是( )

A. B.

C. 是數(shù)列中的最大值 D. 數(shù)列無(wú)最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案