【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學習小組對成都市一中心路段(限行速度為千米/小時)的擁堵情況進行調查統(tǒng)計,通過數(shù)據分析發(fā)現(xiàn):該路段的車流速度(/千米)與車流密度(千米/小時)之間存在如下關系:如果車流密度不超過該路段暢通無阻(車流速度為限行速度);當車流密度在時,車流速度是車流密度的一次函數(shù);車流密度一旦達到該路段交通完全癱瘓(車流速度為零).

1)求關于的函數(shù)

2)已知車流量(單位時間內通過的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.

【答案】12/小時

【解析】

1)當時,設,將,代入方程組即可求出,進而可得關于的函數(shù)

2)分類討論求出每一段的最大值即可.

1)當車流密度時,設

由題意知,當時,;當時,,

建立方程組,解得,

;

2)設車流量為,則,

時, ;

時,,

所以當時,有最大值;

時,.

綜上可知,此路段車流量的最大值為(/小時).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,河的兩岸分別有生活小區(qū),其中,三點共線,的延長線交于點,測得,,,若以所在直線分別為軸建立平面直角坐標系則河岸可看成是曲線(其中是常數(shù))的一部分,河岸可看成是直線(其中為常數(shù))的一部分.

1)求的值.

2)現(xiàn)準備建一座橋,其中分別在上,且的橫坐標為.寫出橋的長關于的函數(shù)關系式,并標明定義域;當為何值時,取到最小值?最小值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若,求函數(shù)的單調區(qū)間;

(Ⅲ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{xn}是各項均為正數(shù)的等比數(shù)列,且x1x2=3,x3x2=2.

(1)求數(shù)列{xn}的通項公式;

(2)如圖,在平面直角坐標系xOy中,依次連接點P1(x1,1),P(x2,2),…,Pn+1(xn+1n+1)得到折線P1P2Pn+1,求由該折線與直線y=0,xx1,xxn+1所圍成的區(qū)域的面積Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調查研究后發(fā)現(xiàn),每天空氣污染的指數(shù).ft),隨時刻t(時)變化的規(guī)律滿足表達式,其中a為空氣治理調節(jié)參數(shù),且a∈(0,1).

(1)令,求x的取值范圍;

(2)若規(guī)定每天中ft)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調節(jié)參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的上頂點與拋物線)的焦點重合.

(1)設橢圓和拋物線交于, 兩點,若,求橢圓的方程;

(2)設直線與拋物線和橢圓均相切,切點分別為, ,記的面積為,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等比數(shù)列的公比為,其前項和為,前項之積為,并且滿足條件:,,下列結論中正確的是( )

A. B.

C. 是數(shù)列中的最大值 D. 數(shù)列無最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了改善居民的休閑娛樂活動場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內鋪設三條小路、,要求點的中點,點在邊上,點在邊時上,且.

1)設,試求的周長關于的函數(shù)解析式,并求出此函數(shù)的定義域;

2)經核算,三條路每米鋪設費用均為元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,均為邊長是2的等邊三角形,平面平面CBE,點O是BE的中點。

(1)求證:;

(2)求直線AB與平面ACE所成角的正弦值。

查看答案和解析>>

同步練習冊答案