【題目】已知橢圓過點(diǎn),且它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同.直線過點(diǎn),且與橢圓相交于兩點(diǎn).
(1)求橢圓的方程;
(2)若直線的一個(gè)方向向量為,求的面積(其中為坐標(biāo)原點(diǎn));
(3)試問:在軸上是否存在點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說明理由.
【答案】(1);(2);(3)定點(diǎn),定值.
【解析】
(1)直接根據(jù)橢圓過點(diǎn),求出,再根據(jù)橢圓的一個(gè)焦點(diǎn)是拋物線拋物線的焦點(diǎn),求得,再求出,得到橢圓的方程.
(2)先求出直線方程,與橢圓的方程聯(lián)立,求出交點(diǎn),再求出的面積.
(3)先設(shè)軸上是存在點(diǎn)使得為定值,設(shè)出直線,的坐標(biāo),表示出
,再分析怎樣使為定值.
解:(1)橢圓過點(diǎn),代入得,拋物線的焦點(diǎn)為,
得,得,故橢圓方程為.
(2),將直線與橢圓聯(lián)立,解得,,
如圖所示:
故.
(3)當(dāng)直線斜率不為0時(shí),設(shè):,,,,
將與橢圓聯(lián)立得,則有,,
則
由于該式不管取何值均為定值,故,得,定值為.
當(dāng)直線斜率為0時(shí),,,.
綜上,定點(diǎn),定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從該設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:
直徑/ | 78 | 79 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 93 | 合計(jì) |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.
(1)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的頻率):
①;②;③,評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁.試判斷設(shè)備的性能等級(jí).
(2)將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“次品”,將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“突變品”,從樣本的“次品”中隨意抽取2件零件,求“突變品”個(gè)數(shù)的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,動(dòng)圓與圓外切,且與直線相切,該動(dòng)圓圓心的軌跡為曲線.
(1)求曲線的方程
(2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),拋物線在點(diǎn)A的切線與交于點(diǎn)N,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列與函數(shù)滿足:①的任意兩項(xiàng)均不相等,且的定義域?yàn)?/span>;②數(shù)列的前的項(xiàng)的和對(duì)任意的都成立,則稱與具有“共生關(guān)系”.
(1)若,試寫出一個(gè)與數(shù)列具有“共生關(guān)系”的函數(shù)的解析式;
(2)若與數(shù)列具有“共生關(guān)系”,求實(shí)數(shù)對(duì)所構(gòu)成的集合,并寫出關(guān)于,,的表達(dá)式;
(3)若,求證:“存在每項(xiàng)都是正數(shù)的無窮等差數(shù)列,使得與具有‘共生關(guān)系’”的充要條件是“點(diǎn)在射線上”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)內(nèi)有一塊以為圓心半徑為20米的圓形區(qū)域.廣場(chǎng),為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計(jì)方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺(tái),舞臺(tái)為扇形區(qū)域,其中兩個(gè)端點(diǎn),分別在圓周上;觀眾席為梯形內(nèi)且在圓外的區(qū)域,其中,,且,在點(diǎn)的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個(gè)觀眾到舞臺(tái)處的距離都不超過60米.設(shè).
(1)求的長(zhǎng)(用表示);
(2)對(duì)于任意,上述設(shè)計(jì)方案是否均能符合要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為拋物線的焦點(diǎn),為的準(zhǔn)線與軸的交點(diǎn),點(diǎn)在拋物線上,設(shè),,,有以下個(gè)結(jié)論:
①的最大值是;②;③存在點(diǎn),滿足.
其中正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)在[1,2]上有且僅有3個(gè)零點(diǎn),其圖象關(guān)于點(diǎn)和直線x對(duì)稱,給出下列結(jié)論:
①;
②函數(shù)f(x)在[0,1]上有且僅有3個(gè)極值點(diǎn);
③函數(shù)f(x)在上單調(diào)遞增;
④函數(shù)f(x)的最小正周期是2.
其中所有正確結(jié)論的編號(hào)是( )
A.②③B.①④C.②③④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人口平均預(yù)期壽命是綜合反映人們健康水平的基本指標(biāo).年第六次全國(guó)人口普查資料表明,隨著我國(guó)社會(huì)經(jīng)濟(jì)的快速發(fā)展,人民生活水平的不斷提高以及醫(yī)療衛(wèi)生保障體系的逐步完善,我國(guó)人口平均預(yù)期壽命繼續(xù)延長(zhǎng),國(guó)民整體健康水平有較大幅度的提高.下圖體現(xiàn)了我國(guó)平均預(yù)期壽命變化情況,依據(jù)此圖,下列結(jié)論錯(cuò)誤的是( )
A.男性的平均預(yù)期壽命逐漸延長(zhǎng)
B.女性的平均預(yù)期壽命逐漸延長(zhǎng)
C.男性的平均預(yù)期壽命延長(zhǎng)幅度略高于女性
D.女性的平均預(yù)期壽命延長(zhǎng)幅度略高于男性
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)求曲線的參數(shù)方程與直線的普通方程;
(Ⅱ)設(shè)點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)和點(diǎn)為直線上的點(diǎn),且.求面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com