【題目】若點(p,q),在|p|≤3,|q|≤3中按均勻分布出現(xiàn).
(1)點M(x,y)橫、縱坐標分別由擲骰子確定,第一次確定橫坐標,第二次確定縱坐標,則點M(x,y)落在上述區(qū)域的概率?
(2)試求方程x2+2px﹣q2+1=0有兩個實數(shù)根的概率.
【答案】
(1)解:根據(jù)題意,點(p,q),在|p|≤3,|q|≤3中,即在如圖的正方形區(qū)域,
其中p、q都是整數(shù)的點有6×6=36個,
點M(x,y)橫、縱坐標分別由擲骰子確定,即x、y都是整數(shù),且1≤x≤3,1≤y≤3,
點M(x,y)落在上述區(qū)域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9個點,
所以點M(x,y)落在上述區(qū)域的概率P1=
(2)解:|p|≤3,|q|≤3表示如圖的正方形區(qū)域,易得其面積為36;
若方程x2+2px﹣q2+1=0有兩個實數(shù)根,則有△=(2p)2﹣4(﹣q2+1)≥0,
解可得p2+q2≥1,為如圖所示正方形中圓以外的區(qū)域,其面積為36﹣π,
即方程x2+2px﹣q2+1=0有兩個實數(shù)根的概率,P2= .
【解析】(1)是古典概型,首先分析可得|p|≤3,|q|≤3整點的個數(shù),進而分析可得點M的縱橫坐標的范圍,可得M的個數(shù),由古典概型公式,計算可得答案;(2)是幾何概型,首先可得|p|≤3,|q|≤3表示正方形區(qū)域,易得其面積,進而根據(jù)方程x2+2px﹣q2+1=0有兩個實數(shù)根,則有△=(2p)2﹣4(﹣q2+1)≥0,變形可得p2+q2≥1,分析可得其表示的區(qū)域即面積,由幾何概型公式,計算可得答案.
【考點精析】根據(jù)題目的已知條件,利用幾何概型的相關(guān)知識可以得到問題的答案,需要掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù), ).
(Ⅰ)把曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;
(Ⅱ)若直線經(jīng)過點,求直線被曲線截得的線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現(xiàn)這兩名學生在相同條件下各射箭10次,命中的環(huán)數(shù)如表:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)是奇函數(shù),并且在R上為增函數(shù),若0≤θ≤ 時,f(msinθ)+f(1﹣m)>0恒成立,則實數(shù)m的取值范圍是( )
A.(0,1)
B.(﹣∞,0)
C.(﹣∞,1)
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時和2小時,漆工油漆一張A、B型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張A、B型桌子分別獲利潤2千元和3千元,試問工廠每天應生產(chǎn)A、B型桌子各多少張,才能獲得利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)=3 700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)=460x-5 000(單位:萬元).
(1)求利潤函數(shù)P(x);(提示:利潤=產(chǎn)值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)證明數(shù)列{an﹣n}為等比數(shù)列
(2)求數(shù)列{an}的前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com