【題目】記邊長為1的正六邊形的六個頂點分別為、、、、、,集合,在中任取兩個元素、,則的概率為________
【答案】
【解析】
先以的中點為坐標(biāo)原點,以所在直線為軸,以的垂直平分線為軸,建立平面直角坐標(biāo)系,得到各頂點坐標(biāo),列舉出集合中所有元素,以及滿足條件的組合,根據(jù)古典概型的概率計算公式,即可求出結(jié)果.
以的中點為坐標(biāo)原點,以所在直線為軸,以的垂直平分線為軸,建立如圖所示的平面直角坐標(biāo)系,
因為正六邊形的邊長為,
所以易得:、、、、、,
因此,,,,,,,,,,,,,,,,,;
共個向量.
因此中含有個不同的元素.
又在中任取兩個元素、,滿足的有:與或;與或; 與或;與或;與或;與或; 與或;與或;與或;與或;與或;與或;共種選法,又由、的任意性,因此滿足的情況共有:種;
又在中任取兩個元素、,共有種情況;
因此,滿足的概率為:.
故答案為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,側(cè)棱與底面垂直的四棱柱ABCD,A1B1C1D1的底面是梯形,AB∥CD,AB⊥AD,AA1=4,DC=2AB,AB=AD=3,點M在棱A1B1上,且A1M=A1B1.已知點E是直線CD上的一點,AM∥平面BC1E.
(1)試確定點E的位置,并說明理由;
(2)求三棱錐M-BC1E的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述正確的是( )
A.命題“p且q”為真,則恰有一個為真命題
B.命題“已知,則“”是“”的充分不必要條件”
C.命題都有,則,使得
D.如果函數(shù)在區(qū)間上是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
有時可用函數(shù)
描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).
(1) 證明:當(dāng)時,掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,
.當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向右平移個單位長度得到的圖象,若的對稱中心為坐標(biāo)原點,則關(guān)于函數(shù)有下述四個結(jié)論:
①的最小正周期為 ②若的最大值為2,則
③在有兩個零點 ④在區(qū)間上單調(diào)
其中所有正確結(jié)論的標(biāo)號是( )
A.①③④B.①②④C.②④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為奇函數(shù),a為常數(shù).
(1)求a的值;
(2)判斷函數(shù)在時單調(diào)性并證明;
(3)若對于區(qū)間上的每一個x的值,不等式恒成立,求m取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新能源汽車是我國汽車工業(yè)由大變強的一條必經(jīng)之路!國家對其給予政策上的扶持,己成為我國的戰(zhàn)略方針.近年來,我國新能源汽車制造蓬勃發(fā)展,某著名車企自主創(chuàng)新,研發(fā)了一款新能源汽車,經(jīng)過大數(shù)據(jù)分析獲得:在某種路面上,該品牌汽車的剎車距離(米)與其車速(千米/小時)滿足下列關(guān)系:(,是常數(shù)).(行駛中的新能源汽車在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離).如圖是根據(jù)多次對該新能源汽車的實驗數(shù)據(jù)繪制的剎車距離(米)與該車的車速(千米/小時)的關(guān)系圖.該新能源汽車銷售公司為滿足市場需求,國慶期間在甲、乙兩地同時展銷該品牌的新能源汽車,在甲地的銷售利潤(單位:萬元)為,在乙地的銷售利潤(單位:萬元)為,其中為銷售量(單位:輛).
(1)若該公司在兩地共銷售20輛該品牌的新能源汽車,則能獲得的最大利潤是多少?
(2)如果要求剎車距離不超過25.2米,求該品牌新能源汽車行駛的最大速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com