【題目】如圖所示,在四棱錐中,底面為菱形,底面,點(diǎn)是上的一個(gè)動(dòng)點(diǎn),,.
(1)當(dāng)時(shí),求證:;
(2)當(dāng)平面時(shí),求二面角的余弦值.
【答案】(1)見(jiàn)證明;(2)
【解析】
(1)由已知可得PA可證平面,所以,可證平面,從而得到證明;(2)連接交于,當(dāng)平面時(shí),,以為原點(diǎn),分別以,,為軸,軸,軸建立空間直角坐標(biāo)系.求平面和平面PBD的法向量,利用兩個(gè)法向量的數(shù)量積計(jì)算即可得結(jié)果.
(1)因?yàn)?/span>底面,平面,
所以
又為菱形,連接交于,所以.
又因?yàn)?/span>,平面,平面,
所以平面
又因?yàn)?/span>平面,所以,又因?yàn)?/span>
,平面,
平面,所以平面,又因?yàn)?/span>平面
所以.
(2)法一:因?yàn)?/span>平面,平面,
平面平面,
從而,
平面,又因?yàn)?/span>.以為原點(diǎn),
分別以,,為軸,軸,軸建立空間直角坐標(biāo)系.
設(shè),,,,
設(shè)平面的法向量為
因?yàn)?/span>,,
由,,得,
令,則,.
設(shè)平面的法向量為,因?yàn)?/span>平面,
可設(shè),
設(shè)二面角的平面角為,由圖可知為銳角,從而
法二:因?yàn)樵谄矫?/span>中,在平面中,,
從而為二面角的平面角,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性,并指出其單調(diào)區(qū)間;
(2)若對(duì)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程是 (是參數(shù), ),直線的參數(shù)方程是 (是參數(shù)),曲線與直線有一個(gè)公共點(diǎn)在軸上,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系
(1)求曲線的極坐標(biāo)方程;
(2)若點(diǎn),,在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限x和所支出的維修費(fèi)y(萬(wàn)元)的幾組對(duì)照數(shù)據(jù):
x(年) | 2 | 3 | 4 | 5 | 6 |
y(萬(wàn)元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y對(duì)x呈線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬(wàn)元,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)當(dāng)時(shí),若不等式在時(shí)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中a,.
(1)若函數(shù)在處取得極小值,求a,b的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)若函數(shù)在上只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)A,B,及CD的中點(diǎn)P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長(zhǎng)為ykm.
(I)按下列要求寫出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式.
(Ⅱ)請(qǐng)你選用(I)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長(zhǎng)度最短.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com