【題目】設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性,并指出其單調(diào)區(qū)間;
(2)若對(duì)恒成立,求的取值范圍.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)對(duì)函數(shù)求導(dǎo),對(duì)a進(jìn)行討論:當(dāng)a>0和a≤0時(shí),研究函數(shù)的單調(diào)性.(2)原不等式等價(jià)于在上恒成立,構(gòu)造函數(shù),由m(x)的單調(diào)性即即可得到a的范圍.
(1)由,得,.
①當(dāng)時(shí),,,在上單調(diào)遞減,
②當(dāng)時(shí),,
當(dāng)時(shí),;當(dāng)時(shí),.
故在上單調(diào)遞減,在上單調(diào)遞增,
故當(dāng)時(shí),在上單調(diào)遞減;
當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.
(2)原不等式等價(jià)于在上恒成立,
即在上恒成立,
令,
只需在上恒成立即可.
又因?yàn)?/span>,所以在處必大于等于0.
令,由,可得.
當(dāng)時(shí), .
因?yàn)?/span>,所以,又,故在時(shí)恒大于0,
所以當(dāng)時(shí),在上單調(diào)遞增,
所以,故也在上單調(diào)遞增,
所以,即在上恒大于0.
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,
.
(1)證明: ;
(2)若直線(xiàn)與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.在統(tǒng)計(jì)學(xué)中,獨(dú)立性檢驗(yàn)是檢驗(yàn)兩個(gè)分類(lèi)變量是否有關(guān)系的一種統(tǒng)計(jì)方法
B.在殘差圖中,殘差分布的帶狀區(qū)域的寬度越狹窄,其模擬的效果越好
C.線(xiàn)性回歸方程對(duì)應(yīng)的直線(xiàn)至少經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)
D.在回歸分析中,相關(guān)指數(shù)越大,模擬的效果越好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(I)當(dāng)a=1時(shí),證明在是增函數(shù);
(Ⅱ)若當(dāng)時(shí),,求a取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績(jī)繪制如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績(jī);(精確到個(gè)位)
(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績(jī)近似服從正態(tài)分布(,約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.
(。估計(jì)本次檢測(cè)成績(jī)達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績(jī)大約是多少分?(精確到個(gè)位)
(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說(shuō)明:表示的概率.參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)y=x2+mx–2與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1).當(dāng)m變化時(shí),解答下列問(wèn)題:
(1)能否出現(xiàn)AC⊥BC的情況?說(shuō)明理由;
(2)證明過(guò)A,B,C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的函數(shù),其導(dǎo)函數(shù).
(1)如果函數(shù)在處有極值,求函數(shù)的表達(dá)式;
(2)當(dāng)時(shí),函數(shù)的圖象上任一點(diǎn)P處的切線(xiàn)斜率為k,若,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最大值為,周期為,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度得到的圖象,若是偶函數(shù),則的解析式為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面為菱形,底面,點(diǎn)是上的一個(gè)動(dòng)點(diǎn),,.
(1)當(dāng)時(shí),求證:;
(2)當(dāng)平面時(shí),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com