【題目】如圖,在正方體中,為棱、的三等分點(靠近A點).
求證:(1)平面;
(2)求證:平面平面.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“砥礪奮進的五年”,首都經(jīng)濟社會發(fā)展取得新成就.自2012年以來,北京城鄉(xiāng)居民收入穩(wěn)步增長.隨著擴大內(nèi)需,促進消費等政策的出臺,居民消費支出全面增長,消費結(jié)構(gòu)持續(xù)優(yōu)化升級,城鄉(xiāng)居民人均可支配收入快速增長,人民生活品質(zhì)不斷提升.下圖是北京市2012-2016年城鄉(xiāng)居民人均可支配收入實際增速趨勢圖(例如2012年,北京城鎮(zhèn)居民收入實際增速為7.3%,農(nóng)村居民收入實際增速為8.2%).
(Ⅰ)從2012-2016五年中任選一年,求城鎮(zhèn)居民收入實際增速大于7%的概率;
(Ⅱ)從2012-2016五年中任選一年,求至少有一年農(nóng)村和城鎮(zhèn)居民收入實際增速均超過7%的概率;
(Ⅲ)由圖判斷,從哪年開始連續(xù)三年農(nóng)村居民收入實際增速方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為,離心率.
(I)求橢圓C的標準方程;
(II)已知直線交橢圓C于A,B兩點.
①若直線經(jīng)過橢圓C的左焦點F,交y軸于點P,且滿足.求證:為定值;
②若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓與軸的左右交點分別為,與軸正半軸的交點為.
(1)若直線過點并且與圓相切,求直線的方程;
(2)若點是圓上第一象限內(nèi)的點,直線分別與軸交于點,點是線段的中點,直線,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為,記直線CA、CB的斜率分別為,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的離心率為,短軸端點到焦點的距離為.
(1)求橢圓的方程;
(2)設(shè),為橢圓上任意兩點,為坐標原點,且.求證:原點到直線的距離為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為函數(shù)的導(dǎo)函數(shù),且.
(1)判斷函數(shù)的單調(diào)性;
(2)若,討論函數(shù)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知(b-c)2=a2-bc.
(1)求sinA;
(2)若a=2,且sinB,sinA,sinC成等差數(shù)列,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣x2+x,a∈R.
(Ⅰ)當a=1時,求f(x)在[﹣1,1]上的最大值和最小值;
(Ⅱ)若f(x)在區(qū)間[,2]上單調(diào)遞增,求a的取值范圍;
(Ⅲ)當m<0時,試判斷函數(shù)g(x)=-其中f′(x)是f(x)的導(dǎo)函數(shù))是否存在零點,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com