【題目】定義“正對(duì)數(shù)”: ,現(xiàn)有四個(gè)命題:
①若,則
②若,則
③若,則
④若,則
其中的真命題有:____________ (寫出所有真命題的編號(hào))
【答案】①③④
【解析】試題分析:
因?yàn)槎x的“正對(duì)數(shù)”: 是一個(gè)分段函數(shù) ,所以對(duì)命題的判斷必須分情況討論:
對(duì)于命題①(1)當(dāng), 時(shí),有,從而, ,所以;(2)當(dāng), 時(shí),有,從而, ,所以;這樣若,則,即命題①正確.
對(duì)于命題②舉反例:當(dāng)時(shí), ,
所以,即命題②不正確.
對(duì)于命題③,首先我們通過(guò)定義可知“正對(duì)數(shù)”有以下性質(zhì): ,且,(1)當(dāng), 時(shí), ,而,所以;(2)當(dāng), 時(shí),有, ,而,因?yàn)?/span>,所以;(3)當(dāng), 時(shí),有, ,而,所以;(4)當(dāng), 時(shí), ,而,所以,綜上即命題③正確.
對(duì)于命題④首先我們通過(guò)定義可知“正對(duì)數(shù)”還具有性質(zhì):若,則,(1)當(dāng), 時(shí),有,從而, ,所以;(2)當(dāng), 時(shí),有,從而, ,所以;(3)當(dāng), 時(shí),與(2)同理,所以;(4)當(dāng), 時(shí), , ,因?yàn)?/span>,所以,從而,綜上即命題④正確.
通過(guò)以上分析可知:真命題有①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)內(nèi)取到一個(gè)最大值和一個(gè)最小值,且當(dāng)x=π時(shí),y有最大值3,當(dāng)x=6π時(shí),y有最小值﹣3.
(1)求此函數(shù)解析式;
(2)寫出該函數(shù)的單調(diào)遞增區(qū)間;
(3)是否存在實(shí)數(shù)m,滿足不等式Asin( )>Asin( )?若存在,求出m值(或范圍),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在[1,e]上的最小值為1,求實(shí)數(shù)a的取值范圍;(其中e為自然對(duì)數(shù)的底數(shù));
(3)若 上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1
(1) 求數(shù)列{an}的通項(xiàng)公式;
(2) 設(shè)數(shù)列{bn}的前n項(xiàng)和Tn,且Tn+ = λ(λ為常數(shù)),令cn=b2n,(n∈N).求數(shù)列{cn}的前n項(xiàng)和Rn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有甲、乙、丙、丁4個(gè)學(xué)生課余參加學(xué)校社團(tuán)文學(xué)社與街舞社的活動(dòng),每人參加且只能參加一個(gè)社團(tuán)的活動(dòng),且參加每個(gè)社團(tuán)是等可能的.
(1)求文學(xué)社和街舞社都至少有1人參加的概率;
(2)求甲、乙同在一個(gè)社團(tuán),且丙、丁不同在一個(gè)社團(tuán)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= 是定義在區(qū)間(﹣1,1)上的奇函數(shù),且f(2)= ,
(1)確定函數(shù)f(x)的解析式;
(2)用定義法證明f(x)在區(qū)間(﹣1,1)上是增函數(shù);
(3)解不等式f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2 (a∈R),且f(1)>f(3),f(2)>f(3)( )
A.若k=1,則|a﹣1|<|a﹣2|
B.若k=1,則|a﹣1|>|a﹣2|
C.若k=2,則|a﹣1|<|a﹣2|
D.若k=2,則|a﹣1|>|a﹣2|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形中, , ,平面平面, 為等邊三角形, 分別是的中點(diǎn), .
(1)證明: ;
(2)證明: 平面;
(3)若,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形中,, 為的中點(diǎn)。將 沿折起,使得平面平面。
(1)求證: ;
(2)若點(diǎn)是線段上的一動(dòng)點(diǎn),問(wèn)點(diǎn)E在何位置時(shí),二面角的余弦值為。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com