【題目】已知橢圓C的一個(gè)頂點(diǎn)為,焦點(diǎn)在x軸上,若右焦點(diǎn)到直線的距離為3

求橢圓C的方程;

設(shè)橢圓C與直線相交于不同的兩點(diǎn)MN,線段MN的中點(diǎn)為E

當(dāng)時(shí),射線OE交直線于點(diǎn)為坐標(biāo)原點(diǎn),求的最小值;

當(dāng),且時(shí),求m的取值范圍.

【答案】;i;(ii.

【解析】

(Ⅰ)利用點(diǎn)到線的距離公式與求解即可.

(Ⅱ)聯(lián)立直線與橢圓的方程,求出關(guān)于兩點(diǎn)M,N的二次方程與韋達(dá)定理,繼而得出點(diǎn)的坐標(biāo),再化簡(jiǎn)求得的解析式,利用的關(guān)系換元求最值即可.

當(dāng),且時(shí),則,再表達(dá)出斜率的關(guān)系式化簡(jiǎn)利用的關(guān)系求m的取值范圍即可.

,設(shè)橢圓的右焦點(diǎn),由題意得:,解得:,

所以橢圓的方程:;

Ⅱ)(i)設(shè),,將直線與橢圓聯(lián)立整理得:,

,

,,

所以MN的中點(diǎn),

所以射線OE,與直線的交點(diǎn),所以,

所以,當(dāng)且僅當(dāng),

所以時(shí)有最小值2

當(dāng),且時(shí),則,所以,即,解得,

所以m取值范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中,是自然對(duì)數(shù)的底數(shù).

1)設(shè),當(dāng)時(shí),求的最小值;

2)證明:當(dāng)時(shí),總存在兩條直線與曲線都相切;

3)當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論中:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.

其中正確的有____________(把所有正確的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】符合以下性質(zhì)的函數(shù)稱為函數(shù):①定義域?yàn)?/span>,②是奇函數(shù),③(常數(shù)),④上單調(diào)遞增,⑤對(duì)任意一個(gè)小于的正數(shù),至少存在一個(gè)自變量,使.下列四個(gè)函數(shù)中,,,函數(shù)的個(gè)數(shù)為(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(,為實(shí)數(shù)),.

(1)若函數(shù)的最小值是,求的解析式;

(2)在(1)的條件下,在區(qū)間上恒成立,試求的取值范圍;

(3)若,為偶函數(shù),實(shí)數(shù),滿足,,定義函數(shù),試判斷值的正負(fù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

①函數(shù)的圖象關(guān)于軸對(duì)稱的充要條件是,;

②已知是等差數(shù)列的前項(xiàng)和,若,則;

③函數(shù)與函數(shù)的圖象關(guān)于直線對(duì)稱;

④對(duì)于任意兩條異面直線,都存在無窮多個(gè)平面與這兩條異面直線所成的角相等.

其中正確的命題有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)前,旅游已經(jīng)成為新時(shí)期人民群眾美好生活和精神文化需求的重要內(nèi)容.旅游是綜合性產(chǎn)業(yè),是拉動(dòng)經(jīng)濟(jì)發(fā)展的重要?jiǎng)恿,也為整個(gè)經(jīng)濟(jì)結(jié)構(gòu)調(diào)整注入活力.文化旅游產(chǎn)業(yè)研究院發(fā)布了《2019年中國(guó)文旅產(chǎn)業(yè)發(fā)展趨勢(shì)報(bào)告》,報(bào)告指出:旅游業(yè)穩(wěn)步增長(zhǎng),每年占國(guó)家GDP總量的比例逐年增加,如圖及下表為2014年到2018年的相關(guān)統(tǒng)計(jì)數(shù)據(jù).

旅游收入占國(guó)家GDP總量比例趨勢(shì)

年份:

1

2

3

4

5

占比:

10.4

10.8

11.0

11.0

11.2

1)根據(jù)以上數(shù)據(jù),求出占比關(guān)于年份的線性回歸方程

2)根據(jù)(1)所求線性回歸方程,預(yù)測(cè)2019年的旅游收入所占的比例.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體中,EAB中點(diǎn),F在線段.給出下列判斷:①存在點(diǎn)F使得平面;②在平面內(nèi)總存在與平面平行的直線;③平面與平面ABCD所成的二面角(銳角)的大小與點(diǎn)F的位置無關(guān);④三棱錐的體積與點(diǎn)F的位置無關(guān).其中正確判斷的有(

A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年遼寧省正式實(shí)施高考改革.新高考模式下,學(xué)生將根據(jù)自己的興趣、愛好、學(xué)科特長(zhǎng)和高校提供的“選考科目要求”進(jìn)行選課.這樣學(xué)生既能尊重自己愛好、特長(zhǎng)做好生涯規(guī)劃,又能發(fā)揮學(xué)科優(yōu)勢(shì),進(jìn)而在高考中獲得更好的成績(jī)和實(shí)現(xiàn)自己的理想.考改實(shí)施后,學(xué)生將在高二年級(jí)將面臨著的選課模式,其中“3”是指語(yǔ)、數(shù)、外三科必學(xué)內(nèi)容,“1”是指在物理和歷史中選擇一科學(xué)習(xí),“2”是指在化學(xué)、生物、地理、政治四科中任選兩科學(xué)習(xí).某校為了更好的了解學(xué)生對(duì)“1”的選課情況,學(xué)校抽取了部分學(xué)生對(duì)選課意愿進(jìn)行調(diào)查,依據(jù)調(diào)查結(jié)果制作出如下兩個(gè)等高堆積條形圖:根據(jù)這兩幅圖中的信息,下列哪個(gè)統(tǒng)計(jì)結(jié)論是不正確的(

A.樣本中的女生數(shù)量多于男生數(shù)量

B.樣本中有學(xué)物理意愿的學(xué)生數(shù)量多于有學(xué)歷史意愿的學(xué)生數(shù)量

C.樣本中的男生偏愛物理

D.樣本中的女生偏愛歷史

查看答案和解析>>

同步練習(xí)冊(cè)答案