【題目】2018年遼寧省正式實(shí)施高考改革.新高考模式下,學(xué)生將根據(jù)自己的興趣、愛好、學(xué)科特長和高校提供的“選考科目要求”進(jìn)行選課.這樣學(xué)生既能尊重自己愛好、特長做好生涯規(guī)劃,又能發(fā)揮學(xué)科優(yōu)勢,進(jìn)而在高考中獲得更好的成績和實(shí)現(xiàn)自己的理想.考改實(shí)施后,學(xué)生將在高二年級將面臨著的選課模式,其中“3”是指語、數(shù)、外三科必學(xué)內(nèi)容,“1”是指在物理和歷史中選擇一科學(xué)習(xí),“2”是指在化學(xué)、生物、地理、政治四科中任選兩科學(xué)習(xí).某校為了更好的了解學(xué)生對“1”的選課情況,學(xué)校抽取了部分學(xué)生對選課意愿進(jìn)行調(diào)查,依據(jù)調(diào)查結(jié)果制作出如下兩個等高堆積條形圖:根據(jù)這兩幅圖中的信息,下列哪個統(tǒng)計(jì)結(jié)論是不正確的( )
A.樣本中的女生數(shù)量多于男生數(shù)量
B.樣本中有學(xué)物理意愿的學(xué)生數(shù)量多于有學(xué)歷史意愿的學(xué)生數(shù)量
C.樣本中的男生偏愛物理
D.樣本中的女生偏愛歷史
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的一個頂點(diǎn)為,焦點(diǎn)在x軸上,若右焦點(diǎn)到直線的距離為3.
Ⅰ求橢圓C的方程;
Ⅱ設(shè)橢圓C與直線相交于不同的兩點(diǎn)M,N,線段MN的中點(diǎn)為E.
當(dāng)時,射線OE交直線于點(diǎn)為坐標(biāo)原點(diǎn),求的最小值;
當(dāng),且時,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)為的導(dǎo)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,證明;
(Ⅲ)設(shè)為函數(shù)在區(qū)間內(nèi)的零點(diǎn),其中,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(理)在長方體中,,,,點(diǎn)在棱上移動.
(1)探求多長時,直線與平面成角;
(2)點(diǎn)移動為棱中點(diǎn)時,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,焦距為,拋物線的焦點(diǎn)F是橢圓的頂點(diǎn).
(1)求與的標(biāo)準(zhǔn)方程;
(2)上不同于F的兩點(diǎn)P,Q滿足以PQ為直徑的圓經(jīng)過F,且直線PQ與相切,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
(1)求圓C的直角坐標(biāo)方程及直線的斜率;
(2)直線與圓C交于M,N兩點(diǎn),中點(diǎn)為Q,求Q點(diǎn)軌跡的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個面積為2的等腰直角三角形,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓上,點(diǎn)在直線上,且,求證:為定值;
(3)設(shè)點(diǎn)在橢圓上運(yùn)動,,且點(diǎn)到直線的距離為常數(shù),求動點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若X是一個集合,是一個以X的某些子集為元素的集合,且滿足:①X屬于,屬于;②中任意多個元素的并集屬于;③中任意多個元素的交集屬于.則稱是集合X上的一個拓?fù)?/span>.已知集合,對于下面給出的四個集合:
①;
②;
③;
④.
其中是集合X上的拓?fù)涞募?/span>的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,且,
(1)求的值,并求出及數(shù)列的通項(xiàng)公式;
(2)設(shè)求數(shù)列的前n項(xiàng)和
(3)設(shè)在數(shù)列中取出(為常數(shù))項(xiàng),按照原來的順序排成一列,構(gòu)成等比數(shù)列.若對任意的數(shù)列,均有試求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com