若?x>-1,a(x+1)≤x2+2x+3,則實數(shù)a的最大整數(shù)值是
 
考點:函數(shù)恒成立問題
專題:計算題,不等式的解法及應用
分析:設x+1=t,則x=t-1(t>0),a(x+1)≤x2+2x+3,可化為a≤t+
2
t
,利用基本不等式求最值,即可得出結論.
解答: 解:設x+1=t,則x=t-1(t>0),
∴a(x+1)≤x2+2x+3,可化為a≤t+
2
t

∵t>0,∴t+
2
t
≥2
2

∴a≤2
2
,
∴實數(shù)a的最大整數(shù)值是2.
故答案為:2.
點評:本題考查恒成立問題,考查基本不等式的運用,正確分離參數(shù)是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)f(x)=cos2x的圖象按照向量
a
=(
π
2
,1)平移后得到函數(shù)g(x),那么g(
π
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一輛汽車在筆直的公路上變速行駛,設汽車在時刻t的速度為v(t)=-t2+4,(0≤t≤2)(t的單位:h,v的單位:km/h)則這輛車行駛的路程是
 
km.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若a5=0,則有等式a1+a2+…+an=a1+a2+…+a9-n(n<9,n∈N*)成立.類比上述性質:在等比數(shù)列{bn}中,若b6=1,則有等式
 
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經過點P(x,-6)且cosα=-
5
13
,則
1
sinα
+
1
tanα
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
OA
|=1,|
OB
|=1,∠AOB=
3
,
OC
=
1
2
OA
+
1
4
OB
,則
OA
OC
的夾角大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式(x-1)2>ax2有且僅有三個整數(shù)解,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列關于向量的命題中,
a
b
=
b
a

a
0
,
b
0
,
c
0
,則(
a
b
)•
c
=
a
•(
b
c
);
a
b
=
b
c
a
0
,
b
0
,則
a
=
c
;
④若
a
0
,
b
0
,且
a
b
,則|
a
+
b
|=|
a
-
b
|.
正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以橢圓
x2
8
+
y2
5
=1的焦點為頂點,以橢圓的頂點為焦點的雙曲線的漸近線方程為( 。
A、y=±
3
5
x
B、y=±
5
3
x
C、y=±
15
5
x
D、y=±
15
3
x

查看答案和解析>>

同步練習冊答案