【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知曲線的參數(shù)方程為 為參數(shù)).以坐標原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.

(Ⅰ)當時,求曲線上的點到直線的距離的最大值;

(Ⅱ)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.

【答案】(1)(2)

【解析】試題分析:(1)將直線的極坐標方程化為普通方程,進而由圓的參數(shù)方程得曲線上的點到直線的距離, ,利用三角函數(shù)求最值即可;

(2)曲線上的所有點均在直線的下方,即為對,有恒成立,即(其中)恒成立,進而得.

試題解析:

(1)直線的直角坐標方程為.

曲線上的點到直線的距離,

,

時, ,

即曲線上的點到直線的距離的最大值為.

(2)∵曲線上的所有點均在直線的下方,

∴對,有恒成立,

(其中)恒成立,

.

,∴解得,

∴實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設k∈R,對任意的向量 , 和實數(shù)x∈[0,1],如果滿足 ,則有 成立,那么實數(shù)λ的最小值為(
A.1
B.k
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若上存在零點,求實數(shù)的取值范圍;

(2)當時, 若對任意的,總存在使成立, 求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù))與的圖象上存在關于軸對稱的點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+4[sin(θ+ )]x﹣2,θ∈[0,2π]].
(1)若函數(shù)f(x)為偶函數(shù),求tanθ的值;
(2)若f(x)在[﹣ ,1]上是單調函數(shù),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx(其中常數(shù)a,b∈R),g(x)=f(x)﹣f′(x)是奇函數(shù),
(1)求f(x)的表達式;
(2)求g(x)在[1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設關于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩所學校高三年級分別有1 200人,1 000人,為了了解兩所學校全體高三年級學生在該地區(qū)六校聯(lián)考的數(shù)學成績情況,采用分層抽樣方法從兩所學校一共抽取了110名學生的數(shù)學成績,并作出了頻數(shù)分布統(tǒng)計表如下:

甲校:

分組

[70,80)

[80,90)

[90,100)

[100,110)

頻數(shù)

3

4

8

15

分組

[110,120)

[120,130)

[130,140)

[140,150]

頻數(shù)

15

x

3

2

乙校:

分組

[70,80)

[80,90)

[90,100)

[100,110)

頻數(shù)

1

2

8

9

分組

[110,120)

[120,130)

[130,140)

[140,150]

頻數(shù)

10

10

y

3

x,y的值分別為( )

(A)、12,7 (B)、 10,7 (C)、 10,8 (D)、 11,9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設圓上的點A(2,3)關于直線x+2y=0的對稱點仍在圓上,且與直線x﹣y+1=0相交的弦長為2 ,求圓的方程.

查看答案和解析>>

同步練習冊答案