【題目】數(shù)列是公比為正數(shù)的等比數(shù)列,,;數(shù)列的前項(xiàng)和為,滿足,.
(1)求,;
(2)求數(shù)列,的通項(xiàng)公式;
(3)求.
【答案】(1)1,5;(2),;(3).
【解析】
(1)根據(jù)題意,可知數(shù)列滿足,令和時(shí),代入計(jì)算,即可求出,;
(2)運(yùn)用等比數(shù)列的通項(xiàng)公式求出基本量,即可求出的通項(xiàng)公式;根據(jù)和的關(guān)系和遞推關(guān)系,利用等差中項(xiàng)法證明是首項(xiàng)為,公差的等差數(shù)列,即可求出的通項(xiàng)公式;
(3)由(2)得出,運(yùn)用數(shù)列的錯(cuò)位相減法求和,結(jié)合等比數(shù)列的求和公式,計(jì)算可得所求結(jié)果.
解:(1)由于數(shù)列滿足,,
則,解得:,
,解得:.
(2)由題可知,等比數(shù)列的公比為正數(shù),即,
且,
易知,解得或(舍去),
則,故,;
由于,①
則,,②
①-②得:,③
則有:,,④
同理③-④得:,(注,也符合),
則為等差數(shù)列,首項(xiàng),公差,
故,.
(3)由(2)得出,
設(shè),
則,
,
兩式相減可得:,
即,
化簡(jiǎn)可得,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有2名男生、3名女生,全體排成一行,問下列情形各有多少種不同的排法?(以下各題請(qǐng)用數(shù)字作答)
(1)甲不在中間也不在兩端;
(2)甲、乙兩人必須排在兩端;
(3)男、女生分別排在一起;
(4)男女相間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)購(gòu)是當(dāng)前民眾購(gòu)物的新方式,某公司為改進(jìn)營(yíng)銷方式,隨機(jī)調(diào)査了100名市民,統(tǒng)計(jì)其周平均網(wǎng)購(gòu)
的次數(shù),并整理得到如右的頻數(shù)直方圖,將周平均網(wǎng)購(gòu)次數(shù)不小于4次的民眾稱為網(wǎng)購(gòu)迷.這100名市民中,年齡不超過40歲的有65人,且網(wǎng)購(gòu)迷中有5名市民的年齡超過40歲
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.10的前提條件下認(rèn)為網(wǎng)購(gòu)迷與年齡不超過40歲有關(guān)?
(2)現(xiàn)從網(wǎng)購(gòu)迷中按分層抽樣選5人代表進(jìn)一步進(jìn)行調(diào)查,若從5人代表中任意挑選2人,求挑選的2人中有年齡超過40歲的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司共有10條產(chǎn)品生產(chǎn)線,不超過5條生產(chǎn)線正常工作時(shí),每條生產(chǎn)線每天純利潤(rùn)為1100元,超過5條生產(chǎn)線正確工作時(shí),超過的生產(chǎn)線每條純利潤(rùn)為800元,原生產(chǎn)線利潤(rùn)保持不變.未開工的生產(chǎn)線每條每天的保養(yǎng)等各種費(fèi)用共100元.用x表示每天正常工作的生產(chǎn)線條數(shù),用y表示公司每天的純利潤(rùn).
(I)寫出y關(guān)于x的函數(shù)關(guān)系式,并求出純利潤(rùn)為7700元時(shí)工作的生產(chǎn)線條數(shù).
(II)為保證新開的生產(chǎn)線正常工作,需對(duì)新開的生產(chǎn)線進(jìn)行檢測(cè),現(xiàn)從該生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測(cè)量產(chǎn)品數(shù)據(jù),用統(tǒng)計(jì)方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估計(jì)值.為檢測(cè)該生產(chǎn)線生產(chǎn)狀況,現(xiàn)從加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為X,依據(jù)以下不等式評(píng)判(P表示對(duì)應(yīng)事件的概率)
①
②
③
評(píng)判規(guī)則為:若至少滿足以上兩個(gè)不等式,則生產(chǎn)狀況為優(yōu),無(wú)需檢修;否則需檢修生產(chǎn)線.試判斷該生產(chǎn)線是否需要檢修.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠需要對(duì)這些產(chǎn)品的性能進(jìn)行檢測(cè)現(xiàn)決定利用隨機(jī)數(shù)表法從中抽取100件產(chǎn)品進(jìn)行抽樣檢測(cè),將700件產(chǎn)品按001,002,…,700進(jìn)行編號(hào)
(1)如果從第8行第4列的數(shù)開始向右讀,請(qǐng)你依次寫出最先檢測(cè)的3件產(chǎn)品的編號(hào);(下面摘取了隨機(jī)數(shù)表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)檢測(cè)結(jié)果分為優(yōu)等、合格、不合格三個(gè)等級(jí),抽取的100件產(chǎn)品的安全性能和環(huán)保性能的檢測(cè)結(jié)果如下表(橫向和縱向分別表示安全性能和環(huán)保性能):
(i)若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為34%,求的值;
(ii)若,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率.
件數(shù) | 環(huán)保性能 | |||
優(yōu)等 | 合格 | 不合格 | ||
安全性能 | 優(yōu)等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | m | 4 | n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊半圓形的空地,直徑米,政府計(jì)劃在空地上建一個(gè)形狀為等腰梯形的花圃,如圖所示,其中為圓心,,在半圓上,其余為綠化部分,設(shè).
(1)記花圃的面積為,求的最大值;
(2)若花圃的造價(jià)為10元/米,在花圃的邊、處鋪設(shè)具有美化效果的灌溉管道,鋪設(shè)費(fèi)用為500元/米,兩腰、不鋪設(shè),求滿足什么條件時(shí),會(huì)使總造價(jià)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實(shí)數(shù)的值;
(2)在(1)的條件下,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中,底面,,,是的中點(diǎn),是線段上的一點(diǎn),且,連接,,.
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2019·濰坊期末]某鋼鐵加工廠新生產(chǎn)一批鋼管,為了了解這批產(chǎn)品的質(zhì)量狀況,檢驗(yàn)員隨機(jī)抽取了100件鋼管作為樣本進(jìn)行檢測(cè),將它們的內(nèi)徑尺寸作為質(zhì)量指標(biāo)值,由檢測(cè)結(jié)果得如下頻率分布表和頻率分布直方圖:
分組 | 頻數(shù) | 頻率 |
25.05~25.15 | 2 | 0.02 |
25.15~25.25 | ||
25.25~25.35 | 18 | |
25.35~25.45 | ||
25.45~25.55 | ||
25.55~25.65 | 10 | 0.1 |
25.65~25.75 | 3 | 0.03 |
合計(jì) | 100 | 1 |
(1)求,;
(2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:鋼管內(nèi)徑尺寸大于等于25.75或小于25.15為不合格,鋼管尺寸在或為合格等級(jí),鋼管尺寸在為優(yōu)秀等級(jí),鋼管的檢測(cè)費(fèi)用為0.5元/根.
(i)若從和的5件樣品中隨機(jī)抽取2根,求至少有一根鋼管為合格的概率;
(ii)若這批鋼管共有2000根,把樣本的頻率作為這批鋼管的頻率,有兩種銷售方案:
①對(duì)該批剩余鋼管不再進(jìn)行檢測(cè),所有鋼管均以45元/根售出;
②對(duì)該批剩余鋼管一一進(jìn)行檢測(cè),不合格產(chǎn)品不銷售,合格等級(jí)的鋼管50元/根,優(yōu)等鋼管60元/根.
請(qǐng)你為該企業(yè)選擇最好的銷售方案,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com