【題目】設(shè)橢圓的一個(gè)焦點(diǎn)為,四條直線,所圍成的區(qū)域面積為.
(1)求的方程;
(2)設(shè)過的直線與交于不同的兩點(diǎn),設(shè)弦的中點(diǎn)為,且(為原點(diǎn)),求直線的方程.
【答案】(1)(2)
【解析】
(1)由題意,結(jié)合橢圓的性質(zhì)可得的方程組,解方程組即可求得橢圓的標(biāo)準(zhǔn)方程.
(2)因?yàn)橹本過定點(diǎn),設(shè)出直線方程,并聯(lián)立橢圓方程.化簡后利用判別式求得斜率的取值范圍.由三角形幾何性質(zhì)可知,結(jié)合平面向量數(shù)量積定義及韋達(dá)定理求得斜率的方程,解方程即可求得斜率,進(jìn)而可得直線的方程.
(1)依題意得,解得
橢圓的方程為.
(2)易知直線的斜率存在,并設(shè)直線方程為,
聯(lián)立橢圓,,化簡得,
設(shè)、,
,
且,
由三角形幾何性質(zhì)可知
,
即,
.
將
代入上式得
化簡得,所以
故所求的直線方程為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(1)在曲線上任取一點(diǎn),連接,在射線上取一點(diǎn),使,求點(diǎn)軌跡的極坐標(biāo)方程;
(2)在曲線上任取一點(diǎn),在曲線上任取一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(ωx+φ)cos(ωx+φ)(ω>0,|φ|)的圖象與直線y=2的兩個(gè)相鄰的交點(diǎn)之間的距離為π,且f(x)+f(﹣x)=0,若g(x)=sin(ωx+φ),則( 。
A.g(x)在(0,)上單調(diào)遞增B.g(x)在 (0,)上單調(diào)遞減
C.g(x)在(,)上單調(diào)遞增D.g(x)在(,)上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:區(qū)間,,,的長度均為,若不等式的解集是互不相交區(qū)間的并集,設(shè)該不等式的解集中所有區(qū)間的長度之和為,則( )
A. 當(dāng)時(shí),B. 當(dāng)時(shí),
C. 當(dāng)時(shí),D. 當(dāng)時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)為( )
①“為真”是“為真”的充分不必要條件;
②若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2;
③在區(qū)間上隨機(jī)取一個(gè)數(shù),則事件“”發(fā)生的概率為
④已知隨機(jī)變量服從正態(tài)分布,且,則.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足:①定義為;②.
(1)求的解析式;
(2)若;均有成立,求的取值范圍;
(3)設(shè),試求方程的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在常數(shù),使得對任意,,均有,則稱為有界集合,同時(shí)稱為集合的上界.
(1)設(shè),,試判斷是否為有界集合,并說明理由;
(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.
(3)已知函數(shù),記,,,,求使得集合為有界集合時(shí)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“高中新課程改革”,某數(shù)學(xué)老師分別用“傳統(tǒng)教學(xué)”和“新課程”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果.期中考試后,分別從兩個(gè)班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績不低于120分者為“成績優(yōu)良”.
分?jǐn)?shù) | |||||
甲班頻數(shù) | 7 | 5 | 4 | 3 | 1 |
乙班頻數(shù) | 1 | 2 | 5 | 5 | 7 |
(1)從以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否犯錯(cuò)誤的頻率不超過0.01的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計(jì) |
P() | 0.10 | 0.05 | 0.025 | 0.010 |
2.706 | 3.841 | 5.024 | 6.635 |
附:,其中.臨界值表如上表:
(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核,在這8人中,記成績不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓()的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com