【題目】2019年全國兩會,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國會第二次會議,分別于201935日和33日在北京召開.為了了解哪些人更關(guān)注兩會,某機構(gòu)隨機抽取了年齡在歲之間的200人進行調(diào)查,并按年齡繪制出頻率分布直方圖,如圖.

若把年齡在區(qū)間,內(nèi)的人分別稱為青少年”“中老年.經(jīng)統(tǒng)計青少年中老年的人數(shù)之比為.其中青少年中有40人關(guān)注兩會中老年中關(guān)注兩會和不關(guān)注兩會的人數(shù)之比為

1)求圖中的值.

2)現(xiàn)采用分層抽樣在中隨機抽取8人作為代表,從8人中任選2人,求2人都是中老年的概率.

3)根據(jù)已知條件,完成下面的列聯(lián)表,并判斷能否有%的把握認為中老年青少年更加關(guān)注兩會

關(guān)注

不關(guān)注

總計

青少年

中老年

總計

附:,其中

【答案】10.05;(2;(3)列聯(lián)表見解析;有99.9%的把握認為中老年青少年更加關(guān)注兩會

【解析】

1)由青少年中老年的人數(shù)之比為,求出,即可得到的值;

2)由分層抽樣求出在中抽取6人,在中抽取2人,再由古典概型求出2人都是中老年的概率即可;

3)先求出列聯(lián)表,再由公式計算出,比較即可得到結(jié)果.

1)由題意得,

解得,

所以;

2)由題意得,在中抽取(人),

分別記為,,,,

中抽取(人),分別記為,

則從8人中任選2人的全部基本事件有

,,,,,,

,,,,,,,,

,,,

28種,其中所選的2人都是中老年的事件只有1種,

2人都是中老年的概率;

3)由題意得,抽取的200人中青少年共有(人),

所以不關(guān)注兩會的青少年共有(人),

中老年中關(guān)注兩會的人有(人),

中老年中不關(guān)注兩會的人有(人),

所以列聯(lián)表如下:

關(guān)注

不關(guān)注

總計

青少年

40

55

95

中老年

70

35

105

總計

110

90

200

所以

所以有99.9%的把握認為中老年青少年更加關(guān)注兩會”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)已知函數(shù)的兩個極值點,若,①證明:;②證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,平面平面,.

(1)求證:平面平面;

(2)若與平面所成的線面角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司為了解本公司快遞業(yè)務(wù)情況,隨機調(diào)查了100個營業(yè)網(wǎng)點,得到了這些營業(yè)網(wǎng)點2019年全年快遞單數(shù)增長率x的頻數(shù)分布表:

1)分別估計該快遞公司快遞單數(shù)增長率不低于40%的營業(yè)網(wǎng)點比例和快遞單數(shù)負增長的營業(yè)網(wǎng)點比例;

2)求2019年該快遞公司快遞單數(shù)增長率的平均數(shù)和標準差的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作為代表).(精確到0.01)參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,側(cè)棱垂直于底面,,的中點,平行于,平行于面,.

(1)求的長;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱中,,DE,F分別為線段,,的中點.

1)證明:平面;

2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓軸交于 兩點,且

(1)求橢圓的方程;

(2)設(shè)點是橢圓上的一個動點,且直線與直線分別交于 兩點.是否存在點使得以 為直徑的圓經(jīng)過點?若存在,求出點的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電動車生產(chǎn)企業(yè),上年度生產(chǎn)電動車的投入成本為1萬元/輛,出廠價為1.2萬元/輛,年銷售量為1000輛.本年度為適應(yīng)市場需求,計劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車投入成本增加的比例為,則出廠價相應(yīng)提高的比例為,且當(dāng)不超過0.5時,預(yù)計年銷售量增加的比例為,而當(dāng)超過0.5時,預(yù)計年銷售量不變.已知年利潤=(出廠價-投入成本)×年銷售量.則本年度預(yù)計的年利潤與投入成本增加的比例的關(guān)系式為______;為使本年度利潤比上年有所增加,投入成本增加的比例的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓,稱圓心在原點,半徑為的圓是橢圓準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.

1)求橢圓的方程和其準圓方程;

2)點是橢圓準圓上的動點,過點作橢圓的切線準圓于點.

①當(dāng)點準圓軸正半軸的交點時,求直線的方程并證明;

②求證:線段的長為定值.

查看答案和解析>>

同步練習(xí)冊答案