已知f(x)=|x+1|+|x-2|
(Ⅰ)求f(x)>5的解集;
(Ⅱ)若關(guān)于x的不等式f(x)<m有解,求實(shí)數(shù)m的取值范圍.
考點(diǎn):絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:(Ⅰ)通過對x取值范圍的討論,去掉絕對值符號,解相應(yīng)的一次不等式,最后取并集即可求得不等式f(x)>5的解集;
(Ⅱ)利用絕對值不等式的幾何意義,可得f(x)min=3,從而可解得實(shí)數(shù)m的取值范圍.
解答: 解:(Ⅰ)∵|x+1|+|x-2|>5,
x≥2
x+1+x-2>5
-1≤x≤2
x+1-x+2>5
x<-1
-x-1-x+2>5
,
解得x<-2或x>3,
∴f(x)>5的解集為{x|x<-2或x>3}…5分;
(Ⅱ)∵當(dāng)x∈R時(shí),恒有|x+1|+|x-2|≥|(x+1)-(x-2)|=3,且不等式|x+1|+|x-2|<m有解,
∴m>3,
故實(shí)數(shù)m的取值范圍是(3,+∞)…10分
點(diǎn)評:本題考查絕對值不等式的解法,對x取值范圍分類討論,去掉絕對值符號是解不等式的關(guān)鍵,考查絕對值不等式的幾何意義及應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2
sin(ωx+φ+
π
4
)(0<φ<
π
2
)的最小正周期為π,且f(-x)=f(x),則( 。
A、f(x)在(0,
π
2
)單調(diào)遞減
B、f(x)在(
π
4
4
)單調(diào)遞減
C、f(x)在(0,
π
2
)單調(diào)遞增
D、f(x)在(
π
4
4
)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐A-BCD被一平面所截,截面為平行四邊形EFGH,
求證:
(1)HG∥平面ACD;     
(2)CD∥EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項(xiàng)a1=2且公比q≠1的等比數(shù)列,a1,2a2,3a3依次成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記數(shù)列{an}的前n項(xiàng)和為Sn,若不等式
Sn-1
Sn+1-1
>λ對任意n∈N*恒成立,求實(shí)數(shù)λ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=1,a2+b2=5,a3+b3=9.
(1)求{an}、{bn}的通項(xiàng)公式;
(2)求數(shù)列{
an
bn
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,E、F、M、N分別是A1B1、BC、C1D1、B1C1的中點(diǎn).
(Ⅰ)用向量方法求直線EF與MN的夾角;
(Ⅱ)求二面角N-EF-M的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ,cosθ是關(guān)于x的方程x2-ax+a=0(a∈R)的兩個(gè)根.
(1)求cos3
π
2
-θ)+sin3
π
2
-θ)的值;
(2)求tan(π-θ)-
1
tanθ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)對任意x∈R都有f(x)+f(1-x)=2.
(1)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)數(shù)列f(x)滿足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),(n∈N*)求證:數(shù)列{an}是等差數(shù)列;
(3)bn=
1
an-1
,Sn=
4n
2n+1
,Tn=b12+b22+b32+…+bn2,試比較Tn與Sn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面是矩形,側(cè)面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中點(diǎn),AC與BD的交點(diǎn)為M.
(1)求證:PC∥平面EBD;
(2)求證:BE⊥平面AED.

查看答案和解析>>

同步練習(xí)冊答案